Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
37  structures 1568  species 2  interactions 1759  sequences 11  architectures

Family: SATase_N (PF06426)

Summary: Serine acetyltransferase, N-terminal

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Serine O-acetyltransferase". More...

Serine O-acetyltransferase Edit Wikipedia article

serine O-acetyltransferase
Identifiers
EC number 2.3.1.30
CAS number 9023-16-9
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / EGO

In enzymology, a serine O-acetyltransferase (EC 2.3.1.30) is an enzyme that catalyzes the chemical reaction

acetyl-CoA + L-serine \rightleftharpoons CoA + O-acetyl-L-serine

Thus, the two substrates of this enzyme are acetyl-CoA and L-serine, whereas its two products are CoA and O-acetyl-L-serine.

This enzyme belongs to the family of transferases, specifically those acyltransferases transferring groups other than aminoacyl groups. The systematic name of this enzyme class is acetyl-CoA:L-serine O-acetyltransferase. Other names in common use include SATase, L-serine acetyltransferase, serine acetyltransferase, and serine transacetylase. This enzyme participates in cysteine metabolism and sulfur metabolism.

Structural studies

As of late 2007, 7 structures have been solved for this class of enzymes, with PDB accession codes 1S80, 1SSM, 1SSQ, 1SST, 1T3D, 1Y7L, and 2ISQ.

N terminal protein domain

SATase N terminal domain
PDB 1ssm EBI.jpg
The structure of the enzyme serine acetyltransferase- apoenzyme (truncated)
Identifiers
Symbol SATase_N
Pfam PF06426
InterPro IPR010493

In molecular biology, the protein domain SATase is short for Serine acetyltransferase and refers to an enzyme that catalyses the conversion of L-serine to L-cysteine in E. coli.[1] More specifically, its role is to catalyse the activation of L-serine by acetyl-CoA.This entry refers to the N-terminus of the protein which has a sequence that is conserved in plants and bacteria.[2]

Importance of function

The N-terminal domain of the protein Serine acetyltransferase helps catalyse acetyl transfer. This particular enzyme catalyses serine into cysteine which is eventually converted to the essential amino acid methionine. Of particular interest to scientists, is the ability to harness the natural ability of the enzyme, Serine acetyltransferase, to create nutritionally essential amino acids and to exploit this ability through transgenic plants. These transgenic plants would contain more essential sulphur amino acids meaning a healthier diet for humans and animals.[3]

Structure

The amino-terminal alpha-helical domain particularly the amino acid residues His158 (histidine in position 158) and Asp143 (aspartic acid in position 143) form a catalytic triad with the substrate for acetyl transfer.[4] There are eight alpha helices that form the N-terminal domain.[4]

References

  1. ^ Denk D, Böck A (March 1987). "L-cysteine biosynthesis in Escherichia coli: nucleotide sequence and expression of the serine acetyltransferase (cysE) gene from the wild-type and a cysteine-excreting mutant". J. Gen. Microbiol. 133 (3): 515–25. doi:10.1099/00221287-133-3-515. PMID 3309158. 
  2. ^ Saito K, Yokoyama H, Noji M, Murakoshi I (July 1995). "Molecular cloning and characterization of a plant serine acetyltransferase playing a regulatory role in cysteine biosynthesis from watermelon". J. Biol. Chem. 270 (27): 16321–6. doi:10.1074/jbc.270.27.16321. PMID 7608200. 
  3. ^ Tabe L, Wirtz M, Molvig L, Droux M, Hell R (March 2010). "Overexpression of serine acetlytransferase produced large increases in O-acetylserine and free cysteine in developing seeds of a grain legume". J. Exp. Bot. 61 (3): 721–33. doi:10.1093/jxb/erp338. PMC 2814105. PMID 19939888. 
  4. ^ a b Pye VE, Tingey AP, Robson RL, Moody PC (September 2004). "The structure and mechanism of serine acetyltransferase from Escherichia coli". J. Biol. Chem. 279 (39): 40729–36. doi:10.1074/jbc.M403751200. PMID 15231846. 
  • Kredich NM, Tomkins GM (1966). "The enzymic synthesis of L-cysteine in Escherichia coli and Salmonella typhimurium". J. Biol. Chem. 241 (21): 4955–65. PMID 5332668. 
  • Smith IK, Thompson JF (1971). "Purification and characterization of L-serine transacetylase and O-acetyl-L-serine sulfhydrylase from kidney bean seedlings (Phaseolus vulgaris)". Biochim. Biophys. Acta. 227 (2): 288–95. doi:10.1016/0005-2744(71)90061-1. PMID 5550822. 


This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Serine acetyltransferase, N-terminal Provide feedback

The N-terminal domain of serine acetyltransferase has a sequence that is conserved in plants [2] and bacteria [1].

Literature references

  1. Denk D, Bock A; , J Gen Microbiol 1987;133:515-525.: L-cysteine biosynthesis in Escherichia coli: nucleotide sequence and expression of the serine acetyltransferase (cysE) gene from the wild-type and a cysteine-excreting mutant. PUBMED:3309158 EPMC:3309158

  2. Saito K, Yokoyama H, Noji M, Murakoshi I; , J Biol Chem 1995;270:16321-16326.: Molecular cloning and characterization of a plant serine acetyltransferase playing a regulatory role in cysteine biosynthesis from watermelon. PUBMED:7608200 EPMC:7608200


External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR010493

The N-terminal domain of serine acetyltransferase has a sequence that is conserved in plants [PUBMED:7608200] and bacteria [PUBMED:7608200].

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(111)
Full
(1759)
Representative proteomes NCBI
(1080)
Meta
(487)
RP15
(116)
RP35
(251)
RP55
(340)
RP75
(424)
Jalview View  View  View  View  View  View  View  View 
HTML View  View  View  View  View  View     
PP/heatmap 1 View  View  View  View  View     
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(111)
Full
(1759)
Representative proteomes NCBI
(1080)
Meta
(487)
RP15
(116)
RP35
(251)
RP55
(340)
RP75
(424)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(111)
Full
(1759)
Representative proteomes NCBI
(1080)
Meta
(487)
RP15
(116)
RP35
(251)
RP55
(340)
RP75
(424)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Pfam-B_1192 (release 8.0)
Previous IDs: none
Type: Domain
Author: Wilbrey A, Studholme DJ
Number in seed: 111
Number in full: 1759
Average length of the domain: 92.10 aa
Average identity of full alignment: 42 %
Average coverage of the sequence by the domain: 34.01 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 23193494 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 20.9 20.9
Trusted cut-off 20.9 20.9
Noise cut-off 20.8 20.8
Model length: 105
Family (HMM) version: 9
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Show

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Interactions

There are 2 interactions for this family. More...

SATase_N Hexapep

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the SATase_N domain has been found. There are 37 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...