Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
0  structures 876  species 0  interactions 925  sequences 2  architectures

Family: FBPase_2 (PF06874)

Summary: Firmicute fructose-1,6-bisphosphatase

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Fructose 1,6-bisphosphatase". More...

Fructose 1,6-bisphosphatase Edit Wikipedia article

fructose-1,6-bisphosphatase 1
Fructose-1.6-bisphosphatase-pdb-3FBP.png
Fructose-1,6-bisphosphatase and its fructose 2,6-bisphosphate complex. Rendered from PDB 3FBP.
Identifiers
Symbol FBP1
Alt. symbols FBP
Entrez 2203
HUGO 3606
OMIM 229700
RefSeq NM_000507
UniProt P09467
Other data
EC number 3.1.3.11
Locus Chr. 9 q22.3
Fructose-1-6-bisphosphatase
PDB 1bk4 EBI.jpg
crystal structure of rabbit liver fructose-1,6-bisphosphatase at 2.3 angstrom resolution
Identifiers
Symbol FBPase
Pfam PF00316
Pfam clan CL0171
InterPro IPR000146
PROSITE PDOC00114
SCOP 1frp
SUPERFAMILY 1frp
Firmicute fructose-1,6-bisphosphatase
Identifiers
Symbol FBPase_2
Pfam PF06874
Pfam clan CL0163
InterPro IPR009164
Fructose-1,6-bisphosphatase
PDB 1umg EBI.jpg
crystal structure of fructose-1,6-bisphosphatase
Identifiers
Symbol FBPase_3
Pfam PF01950
InterPro IPR002803
SCOP 1umg
SUPERFAMILY 1umg

Fructose bisphosphatase (EC 3.1.3.11) is an enzyme that converts fructose-1,6-bisphosphate to fructose 6-phosphate in gluconeogenesis and the Calvin cycle which are both anabolic pathways. Fructose bisphosphatase catalyses the conversion of fructose-1,6-bisphosphate to fructose-6-phosphate, which is the reverse of the reaction which is catalysed by phosphofructokinase in glycolysis.[1][2] These enzymes only catalyse the reaction in one direction each, and are regulated by metabolites such as fructose 2,6-bisphosphate so that high activity of one of the two enzymes is accompanied by low activity of the other. More specifically, fructose 2,6-bisphosphate allosterically inhibits fructose 1,6-bisphosphatase, but activates phosphofructokinase-I. Fructose 1,6-bisphosphatase is involved in many different metabolic pathways and found in most organisms. FBPase requires metal ions for catalysis (Mg2+ and Mn2+ being preferred) and the enzyme is potently inhibited by Li+.

Structure

The fold of fructose-1,6-bisphosphatase from pig was noted to be identical to that of inositol-1-phosphatase (IMPase).[3] Inositol polyphosphate 1-phosphatase (IPPase), IMPase and FBPase share a sequence motif (Asp-Pro-Ile/Leu-Asp-Gly/Ser-Thr/Ser) which has been shown to bind metal ions and participate in catalysis. This motif is also found in the distantly-related fungal, bacterial and yeast IMPase homologues. It has been suggested that these proteins define an ancient structurally conserved family involved in diverse metabolic pathways, including inositol signalling, gluconeogenesis, sulphate assimilation and possibly quinone metabolism.[4]

Species distribution

Three different groups of FBPases have been identified in eukaryotes and bacteria (FBPase I-III).[5] None of these groups have been found in archaea so far, though a new group of FBPases (FBPase IV) which also show inositol monophosphatase activity has recently been identified in archaea.[6]

A new group of FBPases (FBPase V) is found in thermophilic archaea and the hyperthermophilic bacterium Aquifex aeolicus.[7] The characterised members of this group show strict substrate specificity for FBP and are suggested to be the true FBPase in these organisms.[7][8] A structural study suggests that FBPase V has a novel fold for a sugar phosphatase, forming a four-layer alpha-beta-beta-alpha sandwich, unlike the more usual five-layered alpha-beta-alpha-beta-alpha arrangement.[8] The arrangement of the catalytic side chains and metal ligands was found to be consistent with the three-metal ion assisted catalysis mechanism proposed for other FBPases.

The fructose 1,6-bisphosphatases found within the Firmicutes (low GC Gram-positive bacteria) do not show any significant sequence similarity to the enzymes from other organisms. The Bacillus subtilis enzyme is inhibited by AMP, though this can be overcome by phosphoenolpyruvate, and is dependent on Mn(2+).[9][10] Mutants lacking this enzyme are apparently still able to grow on gluconeogenic growth substrates such as malate and glycerol.

Interactive pathway map

Click on genes, proteins and metabolites below to link to respective articles. [§ 1]

[[File:
GlycolysisGluconeogenesis_WP534 go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to WikiPathways go to article go to Entrez go to article
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
GlycolysisGluconeogenesis_WP534 go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to WikiPathways go to article go to Entrez go to article
|{{{bSize}}}px|alt=Glycolysis and Gluconeogenesis edit]]
Glycolysis and Gluconeogenesis edit
  1. ^ The interactive pathway map can be edited at WikiPathways: "GlycolysisGluconeogenesis_WP534". 

Hibernation and cold adaptation

Fructose 1,6-bisphosphatase also plays a key role in hibernation, which requires strict regulation of metabolic processes to facilitate entry into hibernation, maintenance, arousal from hibernation, and adjustments to allow long-term dormancy.[11][12][13] During hibernation, an animal's metabolic rate may decrease to around 1/25 of its euthermic resting metabolic rate.[12][13][14] FBPase is modified in hibernating animals to be much more temperature sensitive than it is in euthermic animals.[11][13][14] FBPase in the liver of a hibernating bat showed a 75% decrease in Km for its substrate FBP at 5 °C than at 37 °C.[11] However, in a euthermic bat this decrease was only 25%, demonstrating the difference in temperature sensitivity between hibernating and euthermic bats.[11] When sensitivity to allosteric inhibitors such as AMP, ADP, inorganic phosphate, and fructose-2,6-bisphosphate were examined, FBPase from hibernating bats was much more sensitive to inhibitors at low temperature than in euthermic bats.[11][15][16]

During hibernation, respiration also dramatically decreases, resulting in conditions of relative anoxia in the tissues. Anoxic conditions inhibit gluconeogenesis, and therefore FBPase, while stimulating glycolysis, and this is another reason for reduced FBPase activity in hibernating animals.[17] The substrate of FBPase, fructose 1,6-bisphosphate, has also been shown to activate pyruvate kinase in glycolysis, linking increased glycolysis to decreased gluconeogenesis when FBPase activity is decreased during hibernation.[13]

In addition to hibernation, there is evidence that FBPase activity varies significantly between warm and cold seasons even for animals that do not hibernate.[18] In rabbits exposed to cold temperatures, FBPase activity decreased throughout the duration of cold exposure, increasing when temperatures became warmer again.[18] The mechanism of this FBPase inhibition is thought to be digestion of FBPase by lysosomal proteases, which are released at higher levels during colder periods.[18] Inhibition of FBPase through proteolytic digestion decreases gluconeogenesis relative to glycolysis during cold periods, similar to hibernation.[18]

Fructose 1,6-bisphosphate aldolase is another temperature dependent enzyme that plays an important role in the regulation of glycolysis and gluconeogenesis during hibernation.[14] Its main role is in glycolysis instead of gluconeogenesis, but its substrate is the same as FBPase's, so its activity affects that of FBPase in gluconeogenesis. Aldolase shows similar changes in activity to FBPase at colder temperatures, such as an upward shift in optimum pH at colder temperatures. This adaptation allows enzymes such as FBPase and fructose-1,6-bisphosphate aldolase to track intracellular pH changes in hibernating animals and match their activity ranges to these shifts.[14] Aldolase also complements the activity of FBPase in anoxic conditions (discussed above) by increasing glycolytic output while FBPase inhibition decreases gluconeogenesis activity.[19]

Diabetes

AMP

Fructose 1,6-bisphosphatase is also a key player in treating type 2 diabetes. In this disease, hyperglycemia causes many serious problems, and treatments often focus on lowering blood sugar levels.[20][21][22] Gluconeogenesis in the liver is a major cause of glucose overproduction in these patients, and so inhibition of gluconeogenesis is a reasonable way to treat type 2 diabetes. FBPase is a good enzyme to target in the gluconeogenesis pathway because it is rate-limiting and controls the incorporation of all three-carbon substrates into glucose but is not involved in glycogen breakdown and is removed from mitochondrial steps in the pathway.[20][21][22] This means that altering its activity can have a large effect on gluconeogenesis while reducing the risk of hypoglycemia and other potential side effects from altering other enzymes in gluconeogenesis.[20][21]

Drug candidate have been developed that mimic the inhibitory activity of AMP on FBPase.[20][22] Efforts were made to mimic the allosteric inhibitory effects of AMP while making the drug as structurally different from it as possible.[22] Second-generation FBPase inhibitors have now been developed and have had good results in clinical trials with non-human mammals and now humans.[20][23]

See also

References

  1. ^ Marcus F, Harrsch PB (May 1990). "Amino acid sequence of spinach chloroplast fructose-1,6-bisphosphatase". Archives of Biochemistry and Biophysics. 279 (1): 151–7. doi:10.1016/0003-9861(90)90475-E. PMID 2159755. 
  2. ^ Marcus F, Gontero B, Harrsch PB, Rittenhouse J (Mar 1986). "Amino acid sequence homology among fructose-1,6-bisphosphatases". Biochemical and Biophysical Research Communications. 135 (2): 374–81. doi:10.1016/0006-291X(86)90005-7. PMID 3008716. 
  3. ^ Zhang Y, Liang JY, Lipscomb WN (Feb 1993). "Structural similarities between fructose-1,6-bisphosphatase and inositol monophosphatase". Biochemical and Biophysical Research Communications. 190 (3): 1080–3. doi:10.1006/bbrc.1993.1159. PMID 8382485. 
  4. ^ York JD, Ponder JW, Majerus PW (May 1995). "Definition of a metal-dependent/Li(+)-inhibited phosphomonoesterase protein family based upon a conserved three-dimensional core structure". Proceedings of the National Academy of Sciences of the United States of America. 92 (11): 5149–53. doi:10.1073/pnas.92.11.5149. PMC 41866Freely accessible. PMID 7761465. 
  5. ^ Donahue JL, Bownas JL, Niehaus WG, Larson TJ (Oct 2000). "Purification and characterization of glpX-encoded fructose 1, 6-bisphosphatase, a new enzyme of the glycerol 3-phosphate regulon of Escherichia coli". Journal of Bacteriology. 182 (19): 5624–7. doi:10.1128/jb.182.19.5624-5627.2000. PMC 111013Freely accessible. PMID 10986273. 
  6. ^ Stec B, Yang H, Johnson KA, Chen L, Roberts MF (Nov 2000). "MJ0109 is an enzyme that is both an inositol monophosphatase and the 'missing' archaeal fructose-1,6-bisphosphatase". Nature Structural Biology. 7 (11): 1046–50. doi:10.1038/80968. PMID 11062561. 
  7. ^ a b Rashid N, Imanaka H, Kanai T, Fukui T, Atomi H, Imanaka T (Aug 2002). "A novel candidate for the true fructose-1,6-bisphosphatase in archaea". The Journal of Biological Chemistry. 277 (34): 30649–55. doi:10.1074/jbc.M202868200. PMID 12065581. 
  8. ^ a b Nishimasu H, Fushinobu S, Shoun H, Wakagi T (Jun 2004). "The first crystal structure of the novel class of fructose-1,6-bisphosphatase present in thermophilic archaea". Structure. 12 (6): 949–59. doi:10.1016/j.str.2004.03.026. PMID 15274916. 
  9. ^ Fujita Y, Freese E (Jun 1979). "Purification and properties of fructose-1,6-bisphosphatase of Bacillus subtilis". The Journal of Biological Chemistry. 254 (12): 5340–9. PMID 221467. 
  10. ^ Fujita Y, Yoshida K, Miwa Y, Yanai N, Nagakawa E, Kasahara Y (Aug 1998). "Identification and expression of the Bacillus subtilis fructose-1, 6-bisphosphatase gene (fbp)". Journal of Bacteriology. 180 (16): 4309–13. PMC 107433Freely accessible. PMID 9696785. 
  11. ^ a b c d e Storey KB (December 1997). "Metabolic regulation in mammalian hibernation: enzyme and protein adaptations". Comparative Biochemistry and Physiology. Part a, Physiology. 118 (4): 1115–24. doi:10.1016/S0300-9629(97)00238-7. PMID 9505421. 
  12. ^ a b Heldmaier G, Ortmann S, Elvert R (August 2004). "Natural hypometabolism during hibernation and daily torpor in mammals". Respiratory Physiology & Neurobiology. 141 (3): 317–29. doi:10.1016/j.resp.2004.03.014. PMID 15288602. 
  13. ^ a b c d Brooks SP, Storey KB (January 1992). "Mechanisms of glycolytic control during hibernation in the ground squirrel Spermophilus lateralis". Journal of Comparative Physiology B. 162 (1): 23–28. doi:10.1007/BF00257932. 
  14. ^ a b c d MacDonald JA, Storey KB (December 2002). "Purification and characterization of fructose bisphosphate aldolase from the ground squirrel, Spermophilus lateralis: enzyme role in mammalian hibernation". Archives of Biochemistry and Biophysics. 408 (2): 279–85. doi:10.1016/S0003-9861(02)00579-9. PMID 12464282. 
  15. ^ Ekdahl KN, Ekman P (February 1984). "The effect of fructose 2,6-bisphosphate and AMP on the activity of phosphorylated and unphosphorylated fructose-1,6-bisphosphatase from rat liver". FEBS Letters. 167 (2): 203–9. doi:10.1016/0014-5793(84)80127-1. PMID 6321241. 
  16. ^ Taketa K, Pogell BM (February 1965). "Allosteric Inhibition of Rat Liver Fructose 1,6-Diphosphatase by Adenosine 5'-Monophosphate". The Journal of Biological Chemistry. 240: 651–62. PMID 14275118. 
  17. ^ Underwood AH, Newsholme EA (July 1967). "Control of glycolysis and gluconeogenesis in rat kidney cortex slices". The Biochemical Journal. 104 (1): 300–5. PMC 1270577Freely accessible. PMID 4292000. 
  18. ^ a b c d Fischer EH, Krebs EG, Neurath H, Stadtman ER, eds. (1974). Metabolic Interconversion of Enzymes 1973 Third International Symposium held in Seattle, June 5-8, 1973. Berlin, Heidelberg: Springer. ISBN 978-3-642-80817-3. 
  19. ^ Dawson NJ, Biggar KK, Storey KB (2013). "Characterization of fructose-1,6-bisphosphate aldolase during anoxia in the tolerant turtle, Trachemys scripta elegans: an assessment of enzyme activity, expression and structure". PLOS One. 8 (7): e68830. doi:10.1371/journal.pone.0068830. PMC 3715522Freely accessible. PMID 23874782. 
  20. ^ a b c d e Dang Q, Van Poelje PD, Erion MD (2012). "Chapter 11: The Discovery and Development of MB07803, a Second-Generation Fructose-1,6-bisphosphatase Inhibitor with Improved Pharmacokinetic Properties, as a Potential Treatment of Type 2 Diabetes". In Jones RM. New Therapeutic Strategies for Type 2 Diabetes: Small Molecule Approaches. Cambridge: The Royal Society of Chemistry. doi:10.1039/9781849735322-00306. ISBN 978-1-84973-414-1. 
  21. ^ a b c Arch JR (2011). "Thermogenesis and Related Metabolic Targets in Anti-Diabetic Therapy". In Schwanstecher M. Diabetes - Perspectives in Drug Therapy (1st ed.). Berlin, Heidelberg: Springer. p. 203. ISBN 978-3-642-17214-4. 
  22. ^ a b c d van Poelje PD, Potter SC, Chandramouli VC, Landau BR, Dang Q, Erion MD (June 2006). "Inhibition of fructose 1,6-bisphosphatase reduces excessive endogenous glucose production and attenuates hyperglycemia in Zucker diabetic fatty rats". Diabetes. 55 (6): 1747–54. doi:10.2337/db05-1443. PMID 16731838. 
  23. ^ Kaur R, Dahiya L, Kumar M (December 2017). "Fructose-1,6-bisphosphatase inhibitors: A new valid approach for management of type 2 diabetes mellitus". European Journal of Medicinal Chemistry. 141: 473–505. doi:10.1016/j.ejmech.2017.09.029. PMID 29055870. 

Further reading

  • Berg JM, Tymoczko JL, Stryer L (2002). "Glycolysis and Gluconeogenesis". In Susan Moran (ed.). Biochemistry (5th ed.). 41 Madison Avenue, New York, New York: W. H. Freeman and Company. ISBN 0-7167-3051-0. 

External links

This article incorporates text from the public domain Pfam and InterPro IPR000146

This article incorporates text from the public domain Pfam and InterPro IPR009164

This article incorporates text from the public domain Pfam and InterPro IPR002803

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Firmicute fructose-1,6-bisphosphatase Provide feedback

This family consists of several bacterial fructose-1,6-bisphosphatase proteins ( EC:3.1.3.11) which seem to be specific to phylum Firmicutes. Fructose-1,6-bisphosphatase (FBPase) is a well known enzyme involved in gluconeogenesis [1]. This family does not seem to be structurally related to PF00316.

Literature references

  1. Fujita Y, Yoshida K, Miwa Y, Yanai N, Nagakawa E, Kasahara Y; , J Bacteriol 1998;180:4309-4313.: Identification and expression of the Bacillus subtilis fructose-1, 6-bisphosphatase gene (fbp). PUBMED:9696785 EPMC:9696785


Internal database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR009164

Fructose 1,6-bisphosphatase catalyses the hydrolysis of fructose 1,6-bisphosphate to fructose 6-phosphate [PUBMED:3008716]. This is an essential reaction in the process of gluconeogenesis, the process by which non-carbohydrate precursors are converted to glucose, and hence this enzyme is found almost universally. Enzyme activity can be regulated by a number of different mechanisms including AMP inhibition, cylic AMP-dependent phosphorylation and light-dependent-activation.

This entry represents the class 3 fructose 1,6-bisphosphatases [PUBMED:19270101]. The Bacillus subtilis enzyme is inhibited by AMP, though this can be overcome by phosphoenolpyruvate, and is dependent on Mn(2+) [PUBMED:221467, PUBMED:9696785]. Mutants lacking this enzyme are apparently still able to grow on gluconeogenic growth substrates such as malate and glycerol.

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan Calcineurin (CL0163), which has the following description:

This clan contains the calcineurin-like phosphoesterases. This clan also includes the apparently inactive homologues from the small DNA polymerase subunits [1].

The clan contains the following 8 members:

DNA_pol_E_B FBPase_2 Metallophos Metallophos_2 Metallophos_3 PGA_cap PhoD YmdB

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the UniProtKB sequence database, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(153)
Full
(925)
Representative proteomes UniProt
(2878)
NCBI
(4684)
Meta
(56)
RP15
(225)
RP35
(641)
RP55
(904)
RP75
(1352)
Jalview View  View  View  View  View  View  View  View  View 
HTML View  View               
PP/heatmap 1 View               

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(153)
Full
(925)
Representative proteomes UniProt
(2878)
NCBI
(4684)
Meta
(56)
RP15
(225)
RP35
(641)
RP55
(904)
RP75
(1352)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(153)
Full
(925)
Representative proteomes UniProt
(2878)
NCBI
(4684)
Meta
(56)
RP15
(225)
RP35
(641)
RP55
(904)
RP75
(1352)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Pfam-B_13194 (release 10.0)
Previous IDs: Firmicut_FBPase;
Type: Family
Sequence Ontology: SO:0100021
Author: Moxon SJ
Number in seed: 153
Number in full: 925
Average length of the domain: 609.90 aa
Average identity of full alignment: 48 %
Average coverage of the sequence by the domain: 97.60 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 45638612 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 21.5 21.5
Trusted cut-off 21.5 21.5
Noise cut-off 21.4 21.4
Model length: 637
Family (HMM) version: 11
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Hide

Weight segments by...


Change the size of the sunburst

Small
Large

Colour assignments

Archea Archea Eukaryota Eukaryota
Bacteria Bacteria Other sequences Other sequences
Viruses Viruses Unclassified Unclassified
Viroids Viroids Unclassified sequence Unclassified sequence

Selections

Align selected sequences to HMM

Generate a FASTA-format file

Clear selection

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.