Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
0  structures 237  species 0  interactions 291  sequences 2  architectures

Family: Na_H_antiport_3 (PF07399)

Summary: Putative Na+/H+ antiporter

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Sodium–hydrogen antiporter 3". More...

Sodium–hydrogen antiporter 3 Edit Wikipedia article

SLC9A3
Identifiers
AliasesSLC9A3, NHE3, NHE-3, Sodium–hydrogen antiporter 3, DIAR8, solute carrier family 9 member A3
External IDsOMIM: 182307 MGI: 105064 HomoloGene: 55804 GeneCards: SLC9A3
Gene location (Human)
Chromosome 5 (human)
Chr.Chromosome 5 (human)[1]
Chromosome 5 (human)
Genomic location for SLC9A3
Genomic location for SLC9A3
Band5p15.33Start470,456 bp[1]
End524,449 bp[1]
RNA expression pattern
PBB GE SLC9A3 207212 at fs.png
More reference expression data
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001284351
NM_004174

NM_001081060

RefSeq (protein)

NP_001271280
NP_004165

NP_001074529

Location (UCSC)Chr 5: 0.47 – 0.52 MbChr 13: 74.12 – 74.17 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Sodium–hydrogen antiporter 3 also known as sodium–hydrogen exchanger 3 (NHE3) or solute carrier family 9 member 3 (SLC9A3) is a protein that in humans is encoded by the SLC9A3 gene.[5][6]

SLC9A3 is a sodium–hydrogen antiporter. It is found on the apical side of the epithelial cells of the proximal tubule of the nephron of the kidney, in the apical membrane of enterocytes of the intestine, as well as the basolateral side of both duodenal and pancreatic cells responsible for the release of HCO−3 into the duodenal lumen. It is primarily responsible for maintaining the balance of sodium. It is also indirectly linked to buffering of blood pH. The NHE3 antiporter imports one sodium ion into the cytosol of a tubule cell as it ejects one hydrogen ion from the cell into the lumen of the proximal tubule. The sodium within the tubule cell may then be retained by the body rather than excreted in the urine. The NHE3 antiporter indirectly contributes to blood buffering capacity because hydrogen ions that are ejected are the products of the carbonic anhydrase enzyme, which also makes bicarbonate.[7]

Regulation

Protein kinase C stimulates NHE3, while protein kinase A inhibits it.[8]

There is a specific protein functioning as an NHE3 regulator, Sodium-hydrogen antiporter 3 regulator 1.

Inhibitors

Stimulators

  • Insulin[10] stimulates NHE3 and thereby proximal tubule sodium absorption.

Interactions

Sodium–hydrogen antiporter 3 has been shown to interact with CHP.[11]

References

  1. ^ a b c ENSG00000066230 GRCh38: Ensembl release 89: ENSG00000281861, ENSG00000066230 - Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000036123 - Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ "Entrez Gene: SLC9A3 Solute carrier family 9 (sodium/hydrogen exchanger), member 3".
  6. ^ Brant SR, Bernstein M, Wasmuth JJ, Taylor EW, McPherson JD, Li X, Walker S, Pouyssegur J, Donowitz M, Tse CM (March 1993). "Physical and genetic mapping of a human apical epithelial Na+/H+ exchanger (NHE3) isoform to chromosome 5p15.3". Genomics. 15 (3): 668–72. doi:10.1006/geno.1993.1122. PMID 8096830.
  7. ^ VI. Mechanisms of Salt & Water Reabsorption Archived February 10, 2007, at the Wayback Machine
  8. ^ 852 Walter F., PhD. Boron (2005). Medical Physiology: A Cellular And Molecular Approaoch. Elsevier/Saunders. ISBN 1-4160-2328-3. Page 852
  9. ^ Spencer AG, Labonte ED, Rosenbaum DP, Plato CF, Carreras CW, Leadbetter MR, Kozuka K, Kohler J, Koo-McCoy S, He L, Bell N, Tabora J, Joly KM, Navre M, Jacobs JW, Charmot D (2014). "Intestinal inhibition of the Na+/H+ exchanger 3 prevents cardiorenal damage in rats and inhibits Na+ uptake in humans". Sci Transl Med. 6 (227): 227ra36. doi:10.1126/scitranslmed.3007790. PMID 24622516.
  10. ^ Klisic J, Hu MC, Nief V, Reyes L, Fuster D, Moe OW, Ambühl PM (2002). "Insulin activates Na(+)/H(+) exchanger 3: biphasic response and glucocorticoid dependence". Am J Physiol Renal Physiol. 283 (3): 532ra539. doi:10.1152/ajprenal.00365.2001. PMID 12167605.
  11. ^ Inoue H, Nakamura Y, Nagita M, Takai T, Masuda M, Nakamura N, Kanazawa H (2003). "Calcineurin homologous protein isoform 2 (CHP2), Na+/H+ exchangers-binding protein, is expressed in intestinal epithelium". Biol. Pharm. Bull. 26 (2): 148–55. doi:10.1248/bpb.26.148. PMID 12576672.

Further reading

  • McDonough AA, Leong PK, Yang LE (2003). "Mechanisms of pressure natriuresis: how blood pressure regulates renal sodium transport". Ann. N. Y. Acad. Sci. 986: 669–77. doi:10.1111/j.1749-6632.2003.tb07281.x. PMID 12763917.
  • Orlowski J, Kandasamy RA, Shull GE (1992). "Molecular cloning of putative members of the Na/H exchanger gene family. cDNA cloning, deduced amino acid sequence, and mRNA tissue expression of the rat Na/H exchanger NHE-1 and two structurally related proteins". J. Biol. Chem. 267 (13): 9331–9. PMID 1577762.
  • Brant SR, Yun CH, Donowitz M, Tse CM (1995). "Cloning, tissue distribution, and functional analysis of the human Na+/N+ exchanger isoform, NHE3". Am. J. Physiol. 269 (1 Pt 1): C198-206. doi:10.1152/ajpcell.1995.269.1.C198. PMID 7631746.
  • Colombani V, Silviani V, Marteau C, Lerique B, Cartouzou G, Gerolami A (1996). "Presence of the NHE3 isoform of the Na+/H+ exchanger in human gallbladder". Clin. Sci. 91 (2): 209–12. doi:10.1042/cs0910209. PMID 8795445.
  • Dudeja PK, Rao DD, Syed I, Joshi V, Dahdal RY, Gardner C, Risk MC, Schmidt L, Bavishi D, Kim KE, Harig JM, Goldstein JL, Layden TJ, Ramaswamy K (1996). "Intestinal distribution of human Na+/H+ exchanger isoforms NHE-1, NHE-2, and NHE-3 mRNA". Am. J. Physiol. 271 (3 Pt 1): G483-93. PMID 8843774.
  • Lin X, Barber DL (1996). "A calcineurin homologous protein inhibits GTPase-stimulated Na-H exchange". Proc. Natl. Acad. Sci. U.S.A. 93 (22): 12631–6. doi:10.1073/pnas.93.22.12631. PMC 38044. PMID 8901634.
  • Yun CH, Lamprecht G, Forster DV, Sidor A (1998). "NHE3 kinase A regulatory protein E3KARP binds the epithelial brush border Na+/H+ exchanger NHE3 and the cytoskeletal protein ezrin". J. Biol. Chem. 273 (40): 25856–63. doi:10.1074/jbc.273.40.25856. PMID 9748260.
  • Biemesderfer D, Nagy T, DeGray B, Aronson PS (1999). "Specific association of megalin and the Na+/H+ exchanger isoform NHE3 in the proximal tubule". J. Biol. Chem. 274 (25): 17518–24. doi:10.1074/jbc.274.25.17518. PMID 10364184.
  • Mobasheri A, Golding S, Pagakis SN, Corkey K, Pocock AE, Fermor B, O'Brien MJ, Wilkins RJ, Ellory JC, Francis MJ (1998). "Expression of cation exchanger NHE and anion exchanger AE isoforms in primary human bone-derived osteoblasts". Cell Biol. Int. 22 (7–8): 551–62. doi:10.1006/cbir.1998.0299. PMID 10452823.
  • Trujillo E, Alvarez de la Rosa D, Mobasheri A, González T, Canessa CM, Martín-Vasallo P (1999). "Sodium transport systems in human chondrocytes. II. Expression of ENaC, Na+/K+/2Cl- cotransporter and Na+/H+ exchangers in healthy and arthritic chondrocytes". Histol. Histopathol. 14 (4): 1023–31. PMID 10506918.
  • Repishti M, Hogan DL, Pratha V, Davydova L, Donowitz M, Tse CM, Isenberg JI (2001). "Human duodenal mucosal brush border Na(+)/H(+) exchangers NHE2 and NHE3 alter net bicarbonate movement". Am. J. Physiol. Gastrointest. Liver Physiol. 281 (1): G159-63. doi:10.1152/ajpgi.2001.281.1.G159. PMID 11408268.
  • Malakooti J, Memark VC, Dudeja PK, Ramaswamy K (2002). "Molecular cloning and functional analysis of the human Na(+)/H(+) exchanger NHE3 promoter". Am. J. Physiol. Gastrointest. Liver Physiol. 282 (3): G491-500. doi:10.1152/ajpgi.00273.2001. PMID 11841999.
  • Gekle M, Serrano OK, Drumm K, Mildenberger S, Freudinger R, Gassner B, Jansen HW, Christensen EI (2002). "NHE3 serves as a molecular tool for cAMP-mediated regulation of receptor-mediated endocytosis". Am. J. Physiol. Renal Physiol. 283 (3): F549-58. doi:10.1152/ajprenal.00206.2001. PMID 12167607.
  • Kennedy DJ, Leibach FH, Ganapathy V, Thwaites DT (2002). "Optimal absorptive transport of the dipeptide glycylsarcosine is dependent on functional Na+/H+ exchange activity". Pflügers Arch. 445 (1): 139–46. doi:10.1007/s00424-002-0910-1. PMID 12397398.
  • Lee SH, Seok YS, Jung HH, Oh BH, Lee HM, Kwon SY, Jung KY (2002). "Expression of mRNA transcripts of the Na+/H+ and Cl-/HCO3- exchanger isoforms in human nasal mucosa". Acta Otolaryngol. 122 (8): 866–71. doi:10.1080/003655402/000028045. PMID 12542207.
  • Inoue H, Nakamura Y, Nagita M, Takai T, Masuda M, Nakamura N, Kanazawa H (2003). "Calcineurin homologous protein isoform 2 (CHP2), Na+/H+ exchangers-binding protein, is expressed in intestinal epithelium". Biol. Pharm. Bull. 26 (2): 148–55. doi:10.1248/bpb.26.148. PMID 12576672.
  • Gevaert K, Goethals M, Martens L, Van Damme J, Staes A, Thomas GR, Vandekerckhove J (2003). "Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides". Nat. Biotechnol. 21 (5): 566–9. doi:10.1038/nbt810. PMID 12665801.

External links


This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Putative Na+/H+ antiporter Provide feedback

This family consists of several hypothetical bacterial proteins of around 440 residues in length. The function of this family is unknown. Many members carry 11 or 12 transmembrane regions, suggesting that they might be transporters. One family member, UniProtKB:Q821X2 is classified by TCDB as being an NhaE type of Na+/H+ antiporter.

Internal database links

External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR009978

This family consists of several hypothetical bacterial proteins of around 440 residues in length. The function of this family is unknown. Many members carry 11 or 12 transmembrane regions, suggesting that they might be transporters. One family member, SWISSPROT is classified by TCDB as being an NhaE type of Na+/H+ antiporter.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan IT (CL0182), which has the following description:

This superfamily of secondary carriers specific for cationic and anionic compounds, has been termed the ion transporter (IT) superfamily [1].

The clan contains the following 19 members:

ABG_transport ArsB CitMHS CitMHS_2 DctM DcuA_DcuB DcuC DUF1646 DUF401 EXS GntP_permease Lactate_perm MatC_N Na_H_antiport_2 Na_H_antiport_3 Na_H_antiporter Na_sulph_symp NhaB SCFA_trans

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the UniProtKB sequence database, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(36)
Full
(291)
Representative proteomes UniProt
(1284)
NCBI
(1617)
Meta
(123)
RP15
(55)
RP35
(178)
RP55
(305)
RP75
(487)
Jalview View  View  View  View  View  View  View  View  View 
HTML View  View               
PP/heatmap 1 View               

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(36)
Full
(291)
Representative proteomes UniProt
(1284)
NCBI
(1617)
Meta
(123)
RP15
(55)
RP35
(178)
RP55
(305)
RP75
(487)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(36)
Full
(291)
Representative proteomes UniProt
(1284)
NCBI
(1617)
Meta
(123)
RP15
(55)
RP35
(178)
RP55
(305)
RP75
(487)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Pfam-B_20945 (release 10.0)
Previous IDs: DUF1504;
Type: Family
Sequence Ontology: SO:0100021
Author: Moxon SJ
Number in seed: 36
Number in full: 291
Average length of the domain: 401.20 aa
Average identity of full alignment: 53 %
Average coverage of the sequence by the domain: 95.95 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 47079205 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 25.0 25.0
Trusted cut-off 25.5 71.2
Noise cut-off 24.2 21.3
Model length: 419
Family (HMM) version: 12
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Hide

Weight segments by...


Change the size of the sunburst

Small
Large

Colour assignments

Archea Archea Eukaryota Eukaryota
Bacteria Bacteria Other sequences Other sequences
Viruses Viruses Unclassified Unclassified
Viroids Viroids Unclassified sequence Unclassified sequence

Selections

Align selected sequences to HMM

Generate a FASTA-format file

Clear selection

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.