Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
1  structure 56  species 0  interactions 80  sequences 2  architectures

Family: IL11 (PF07400)

Summary: Interleukin 11

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Interleukin 11". More...

Interleukin 11 Edit Wikipedia article

Human IL-11 crystal structure.png
Available structures
PDB Ortholog search: PDBe RCSB
Aliases IL11, AGIF, IL-11, interleukin 11
External IDs OMIM: 147681 MGI: 107613 HomoloGene: 535 GeneCards: IL11
RNA expression pattern
PBB GE IL11 206924 at fs.png

PBB GE IL11 206926 s at fs.png
More reference expression data
Species Human Mouse
RefSeq (mRNA)



RefSeq (protein)



Location (UCSC) Chr 19: 55.36 – 55.37 Mb Chr 7: 4.77 – 4.78 Mb
PubMed search [1] [2]
View/Edit Human View/Edit Mouse

Interleukin 11 (IL-11) is a protein that in humans is encoded by the IL11 gene.[3]

IL-11 is a multifunctional cytokine first isolated in 1990 from bone marrow-derived stromal cells. It is a key regulator of multiple events in hematopoiesis, most notably the stimulation of megakaryocyte maturation.[4] It is also known under the names adipogenesis inhibitory factor (AGIF)[5] and oprelvekin.

The human IL-11 gene, consisting of 5 exons and 4 introns, is located on chromosome 19,[3] and encodes a 23 kDa protein. IL-11 is a member of the IL-6-type cytokine family, distinguished based on their use of the common co-receptor gp130. Signal specificity is provided by the IL-11Rα subunit.

Downstream signalling

Signal transduction is initiated upon binding of IL-11 to IL-11Ralpha and gp130, facilitating the homodimerization of gp130 molecules. This permits gp130-associated Janus kinases (JAK) to become activated and phosphorylate intracellular tyrosine residues on gp130.[6]


IL-11 has been demonstrated to improve platelet recovery after chemotherapy-induced thrombocytopenia, induce acute phase proteins, modulate antigen-antibody responses, participate in the regulation of bone cell proliferation and differentiation IL-11 causes bone-resorption. It stimulates the growth of certain lymphocytes and, in the murine model, stimulates an increase in the cortical thickness and strength of long bones. In addition to having lymphopoietic/hematopoietic and osteotrophic properties, it has functions in many other tissues, including the brain, gut, testis and bone.[7]

As a signaling molecule, interleukin 11 has a variety of functions associated with its receptor interleukin 11 receptor alpha; such functions include placentation and to some extent of decidualization.[8] IL11 has been expressed to have a role during implantation of the blastocyst in the endometrium of the uterus; as the blastocyst is imbedded within the endometrium, the extravillous trophoblasts will invade the maternal spiral arteries for stability and the transfer of essential life-sustaining elements via the maternal and fetal circulatory systems. This process is highly regulated due to detrimental consequences that can arise from aberrations of the placentation process: poor infiltration of the trophoblasts may result in preeclampsia while severely invasive trophoblasts may resolve in placenta accreta, increta or percreta; all defects which most likely would result in the early demise of the embryo and/or negative effects upon the mother.[8] IL11 has been shown to be present in the decidua and chorionic villi to regulate the extent in which the placenta implants itself; regulations to ensure the well-being of the mother but also the normal growth and survival of the fetus. A murine knockout model has been produced for this particular gene, with initial studies involving IL11 role in bone pathologies but have since progressed to fertility research; further research utilizes endometrial and gestational tissue from humans.[8][9]

Medical use

Interleukin 11 is manufactured using recombinant DNA technology and is marketed as a protein therapeutic called oprelvekin, for the prevention of severe thrombocytopenia in cancer patients.[10]


Many IL-11 functions associated with cell growth and differentiation suggest a role for this cytokine in cancer. A number of studies reported IL-11 as a possible cancer progression marker suggesting that therapeutic targeting of IL-11 or IL11RA in humans may be beneficial, however as of 2017 clinically relevant IL-11 signalling antagonists were still under development.[11]

See also


  1. ^ "Human PubMed Reference:". 
  2. ^ "Mouse PubMed Reference:". 
  3. ^ a b McKinley D, Wu Q, Yang-Feng T, Yang YC (1992). "Genomic sequence and chromosomal location of human interleukin-11 gene (IL11)". Genomics. 13 (3): 814–9. PMID 1386338. doi:10.1016/0888-7543(92)90158-O. 
  4. ^ Paul SR, Bennett F, Calvetti JA, Kelleher K, Wood CR, O'Hara RM, Leary AC, Sibley B, Clark SC, Williams DA (1990). "Molecular cloning of a cDNA encoding interleukin 11, a stromal cell-derived lymphopoietic and hematopoietic cytokine". Proc. Natl. Acad. Sci. U.S.A. 87 (19): 7512–6. PMC 54777Freely accessible. PMID 2145578. doi:10.1073/pnas.87.19.7512. 
  5. ^ Kawashima I, Ohsumi J, Mita-Honjo K, Shimoda-Takano K, Ishikawa H, Sakakibara S, Miyadai K, Takiguchi Y (1991). "Molecular cloning of cDNA encoding adipogenesis inhibitory factor and identity with interleukin-11". FEBS Lett. 283 (2): 199–202. PMID 1828438. doi:10.1016/0014-5793(91)80587-S. 
  6. ^ Heinrich PC, Behrmann I, Haan S, Hermanns HM, Müller-Newen G, Schaper F (August 2003). "Principles of interleukin (IL)-6-type cytokine signalling and its regulation". Biochem. J. 374 (Pt 1): 1–20. PMC 1223585Freely accessible. PMID 12773095. doi:10.1042/BJ20030407. 
  7. ^ Sims NA, Jenkins BJ, Nakamura A, Quinn JM, Li R, Gillespie MT, Ernst M, Robb L, Martin TJ (July 2005). "Interleukin-11 receptor signaling is required for normal bone remodeling.". Journal of Bone and Mineral Research. 20 (7): 1093–102. PMID 15940362. doi:10.1359/JBMR.050209. 
  8. ^ a b c Paiva P, Salamonsen LA, Manuelpillai U, Walker C, Tapia A, Wallace EM, Dimitriadis E (November 2007). "Interleukin-11 promotes migration, but not proliferation, of human trophoblast cells, implying a role in placentation". Endocrinology. 148 (11): 5566–72. PMID 17702845. doi:10.1210/en.2007-0517. 
  9. ^ Chen HF, Lin CY, Chao KH, Wu MY, Yang YS, Ho HN (May 2002). "Defective production of interleukin-11 by decidua and chorionic villi in human anembryonic pregnancy". J. Clin. Endocrinol. Metab. 87 (5): 2320–8. PMID 11994383. doi:10.1210/jc.87.5.2320. 
  10. ^ Neumega
  11. ^ Korneev, KV; Atretkhany, KN; Drutskaya, MS; Grivennikov, SI; Kuprash, DV; Nedospasov, SA (January 2017). "TLR-signaling and proinflammatory cytokines as drivers of tumorigenesis.". Cytokine. 89: 127–135. PMID 26854213. doi:10.1016/j.cyto.2016.01.021. 

Further reading

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Interleukin 11 Provide feedback

This family contains interleukin 11 (approximately 200 residues long). This is a secreted protein that stimulates megakaryocytopoiesis, resulting in increased production of platelets, as well as activating osteoclasts, inhibiting epithelial cell proliferation and apoptosis, and inhibiting macrophage mediator production. These functions may be particularly important in mediating the hematopoietic, osseous and mucosal protective effects of interleukin 11 [1]. Family members seem to be restricted to mammals.

Literature references

  1. Leng SX, Elias JA; , Int J Biochem Cell Biol 1997;29:1059-1062.: Interleukin-11. PUBMED:9416001 EPMC:9416001

Internal database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR020438

Interleukins (IL) are a group of cytokines that play an important role in the immune system. They modulate inflammation and immunity by regulating growth, mobility and differentiation of lymphoid and other cells.

Interleukin-11 (IL-11) is a pleiotropic cytokine that stimulates megakaryocytopoiesis, resulting in increased production of platelets, as well as activating osteoclasts, inhibiting epithelial cell proliferation and apoptosis, and inhibiting macrophage mediator production. These functions may be particularly important in mediating the hematopoietic, osseous and mucosal protective effects of IL-11 [PUBMED:9416001]. The cytokine also possesses anti-inflammatory activity, and has been proposed as a therapeutic agent in the treatment of chronic inflammatory diseases, such as Crohn's disease and rheumatoid arthritis [PUBMED:15992047].

This entry represents interleukin-11.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan 4H_Cytokine (CL0053), which has the following description:

Cytokines are regulatory peptides that can be produced by various cells for communicating and orchestrating the large multicellular system. Cytokines are key mediators of hematopoiesis, immunity, allergy, inflammation, tissue remodeling, angiogenesis, and embryonic development [2]. This superfamily includes both the long and short chain helical cytokines.

The clan contains the following 29 members:

CNTF CSF-1 EPO_TPO Flt3_lig GCSF GM_CSF Hormone_1 IFN-gamma IL10 IL11 IL12 IL13 IL15 IL2 IL22 IL23 IL28A IL3 IL34 IL4 IL5 IL6 IL7 Interferon Leptin LIF_OSM PRF SCF TSLP


We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the UniProtKB sequence database, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

Representative proteomes UniProt
Jalview View  View  View  View  View  View  View  View   
HTML View  View               
PP/heatmap 1 View               

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

Representative proteomes UniProt

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

Representative proteomes UniProt
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download    
Gzipped Download   Download   Download   Download   Download   Download   Download   Download    

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...


This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Pfam-B_20854 (release 10.0)
Previous IDs: none
Type: Domain
Sequence Ontology: SO:0000417
Author: Vella Briffa B
Number in seed: 11
Number in full: 80
Average length of the domain: 159.50 aa
Average identity of full alignment: 43 %
Average coverage of the sequence by the domain: 84.50 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 45638612 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 25.8 25.8
Trusted cut-off 26.1 25.8
Noise cut-off 25.7 25.7
Model length: 170
Family (HMM) version: 11
Download: download the raw HMM for this family

Species distribution

Sunburst controls


Weight segments by...

Change the size of the sunburst


Colour assignments

Archea Archea Eukaryota Eukaryota
Bacteria Bacteria Other sequences Other sequences
Viruses Viruses Unclassified Unclassified
Viroids Viroids Unclassified sequence Unclassified sequence


Align selected sequences to HMM

Generate a FASTA-format file

Clear selection

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls


The tree shows the occurrence of this domain across different species. More...


Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.


For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the IL11 domain has been found. There are 1 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein sequence.

Loading structure mapping...