Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
32  structures 442  species 2  interactions 2772  sequences 269  architectures

Family: Cu_amine_oxidN1 (PF07833)

Summary: Copper amine oxidase N-terminal domain

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Amine oxidase (copper-containing)". More...

Amine oxidase (copper-containing) Edit Wikipedia article

amine oxidase
Identifiers
EC number 1.4.3.6
CAS number 9001-53-0
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / EGO
Copper amine oxidase, enzyme domain
3LOY.pdb.png
Crystal structure of a copper-containing benzylamine oxidase from Hansenula polymorpha.[1]
Identifiers
Symbol Cu_amine_oxid
Pfam PF01179
InterPro IPR015798
PROSITE PDOC00895
SCOP 1oac
SUPERFAMILY 1oac
Copper amine oxidase N-terminal domain
PDB 1d6u EBI.jpg
crystal structure of e. coli amine oxidase anaerobically reduced with beta-phenylethylamine
Identifiers
Symbol Cu_amine_oxidN1
Pfam PF07833
InterPro IPR012854
SCOP 1spu
SUPERFAMILY 1spu
Copper amine oxidase, N2 domain
PDB 1ksi EBI.jpg
crystal structure of a eukaryotic (pea seedling) copper-containing amine oxidase at 2.2a resolution
Identifiers
Symbol Cu_amine_oxidN2
Pfam PF02727
Pfam clan CL0047
InterPro IPR015800
PROSITE PDOC00895
SCOP 1oac
SUPERFAMILY 1oac
Copper amine oxidase, N3 domain
PDB 2oqe EBI.jpg
crystal structure of hansenula polymorpha amine oxidase in complex with xe to 1.6 angstroms
Identifiers
Symbol Cu_amine_oxidN3
Pfam PF02728
Pfam clan CL0047
InterPro IPR015802
PROSITE PDOC00895
SCOP 1oac
SUPERFAMILY 1oac

Amine oxidases (AO) are enzymes that catalyze the oxidation of a wide range of biogenic amines including many neurotransmitters, histamine and xenobiotic amines. There are two classes of amine oxidases: flavin-containing (EC 1.4.3.4) and copper-containing (EC 1.4.3.6). Copper-containing AO act as a disulphide-linked homodimer. They catalyse the oxidation of primary amines to aldehydes, with the subsequent release of ammonia and hydrogen peroxide, which requires one copper ion per subunit and topaquinone as cofactor:[2]

RCH2NH2 + H2O + O2 \rightleftharpoons RCHO + NH3 + H2O2

The 3 substrates of this enzyme are primary amines (RCH2NH2), H2O, and O2, whereas its 3 products are RCHO, NH3, and H2O2.

Copper-containing amine oxidases are found in bacteria, fungi, plants and animals. In prokaryotes, the enzyme enables various amine substrates to be used as sources of carbon and nitrogen.[3][4]

This enzyme belongs to oxidoreductases, specifically those acting on the CH-NH2 group of donors with oxygen as acceptor. The systematic name of this enzyme class is amine:oxygen oxidoreductase (deaminating) (copper-containing). This enzyme participates in 8 metabolic pathways: urea cycle and metabolism of amino groups, glycine, serine and threonine metabolism, histidine metabolism, tyrosine metabolism, phenylalanine metabolism, tryptophan metabolism, beta-alanine metabolism, and alkaloid biosynthesis ii. It has 2 cofactors: copper, and PQQ.

Structure[edit]

The copper amine oxidase 3-dimensional structure was determined through X-ray crystallography.[1] The copper amine oxidases occur as mushroom-shaped homodimers of 70-95 kDa, each monomer containing a copper ion and a covalently bound redox cofactor, topaquinone (TPQ). TPQ is formed by post-translational modification of a conserved tyrosine residue. The copper ion is coordinated with three histidine residues and two water molecules in a distorted square pyramidal geometry, and has a dual function in catalysis and TPQ biogenesis. The catalytic domain is the largest of the 3-4 domains found in copper amine oxidases, and consists of a beta sandwich of 18 strands in two sheets. The active site is buried and requires a conformational change to allow the substrate access.

The N2 and N3 N-terminal domains share a common structural fold, its core consisting of alpha-beta(4), where the helix is packed against the coiled anti-parallel beta-sheets. An additional domain is found at the N-terminal of some copper amine oxidases, as well as in related proteins such as cell wall hydrolase and N-acetylmuramoyl-L-alanine amidase. This domain consists of a five-stranded antiparallel beta-sheet twisted around an alpha helix.[5][6]

Function[edit]

In eukaryotes they have a broader range of functions, including cell differentiation and growth, wound healing, detoxification and cell signalling[7] as well as functioning as a vascular adhesion protein (VAP-1) in some mammalian tissues.[1]

Human proteins containing this domain[edit]

ABP1; AOC2; AOC3;

See also[edit]

References[edit]

  1. ^ a b c PDB 3LOY; Chang CM, Klema VJ, Johnson BJ, Mure M, Klinman JP, Wilmot CM (March 2010). "Kinetic and structural analysis of substrate specificity in two copper amine oxidases from Hansenula polymorpha". Biochemistry 49 (11): 2540–50. doi:10.1021/bi901933d. PMID 20155950. 
  2. ^ Convery MA, Phillips SE, McPherson MJ, Yadav KD, Knowles PF, Parsons MR, Wilmot CM, Blakeley V, Corner AS (1995). "Crystal structure of a quinoenzyme: copper amine oxidase of Escherichia coli at 2 A resolution". Structure 3 (11): 1171–1184. PMID 8591028. 
  3. ^ Murray JM, Convery MA, Phillips SE, McPherson MJ, Knowles PF, Parsons MR, Wilmot CM, Blakeley V, Corner AS, Alton G, Palcic MM (1997). "Catalytic mechanism of the quinoenzyme amine oxidase from Escherichia coli: exploring the reductive half-reaction". Biochemistry 36 (7): 1608–1620. doi:10.1021/bi962205j. PMID 9048544. 
  4. ^ Tanizawa K, Guss JM, Freeman HC, Yamaguchi H, Wilce MC, Dooley DM, Matsunami H, Mcintire WS, Ruggiero CE (1997). "Crystal structures of the copper-containing amine oxidase from Arthrobacter globiformis in the holo and apo forms: implications for the biogenesis of topaquinone". Biochemistry 36 (51): 16116–16133. doi:10.1021/bi971797i. PMID 9405045. 
  5. ^ Parsons MR, Convery MA, Wilmot CM, Yadav KD, Blakeley V, Corner AS, Phillips SE, McPherson MJ, Knowles PF (November 1995). "Crystal structure of a quinoenzyme: copper amine oxidase of Escherichia coli at 2 A resolution". Structure 3 (11): 1171–84. PMID 8591028. 
  6. ^ Wilmot CM, Hajdu J, McPherson MJ, Knowles PF, Phillips SE (November 1999). "Visualization of dioxygen bound to copper during enzyme catalysis". Science 286 (5445): 1724–8. doi:10.1126/science.286.5445.1724. PMID 10576737. 
  7. ^ Guss JM, Freeman HC, Kumar V, Wilce MC, Dooley DM, Harvey I, Mcguirl MA, Zubak VM (1996). "Crystal structure of a eukaryotic (pea seedling) copper-containing amine oxidase at 2.2 A resolution". Structure 4 (8): 943–955. PMID 8805580. 

Further reading[edit]

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Copper amine oxidase N-terminal domain Provide feedback

Copper amine oxidases catalyse the oxidative deamination of primary amines to the corresponding aldehydes, while reducing molecular oxygen to hydrogen peroxide. These enzymes are dimers of identical subunits, each comprising four domains. The N-terminal domain, which is absent in some amine oxidases, consists of a five-stranded antiparallel beta sheet twisted around an alpha helix. The D1 domains from the two subunits comprise the 'stalk' of the mushroom-shaped dimer, and interact with each other but do not pack tightly against each other [1,2].

Literature references

  1. Parsons MR, Convery MA, Wilmot CM, Yadav KD, Blakeley V, Corner AS, Phillips SE, McPherson MJ, Knowles PF; , Structure 1995;3:1171-1184.: Crystal structure of a quinoenzyme: copper amine oxidase of Escherichia coli at 2 A resolution. PUBMED:8591028 EPMC:8591028

  2. Wilmot CM, Hajdu J, McPherson MJ, Knowles PF, Phillips SE; , Science 1999;286:1724-1728.: Visualization of dioxygen bound to copper during enzyme catalysis. PUBMED:10576737 EPMC:10576737


External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR012854

Amine oxidases (AO) are enzymes that catalyse the oxidation of a wide range of biogenic amines including many neurotransmitters, histamine and xenobiotic amines. There are two classes of amine oxidases: flavin-containing (EC) and copper-containing (EC). Copper-containing AO act as a disulphide-linked homodimer. They catalyse the oxidation of primary amines to aldehydes, with the subsequent release of ammonia and hydrogen peroxide, which requires one copper ion per subunit and topaquinone as cofactor [PUBMED:8591028]: RCH2NH2 + H2O + O2 = RCHO + NH3 + H2O2

Copper-containing amine oxidases are found in bacteria, fungi, plants and animals. In prokaryotes, the enzyme enables various amine substrates to be used as sources of carbon and nitrogen [PUBMED:9048544, PUBMED:9405045]. In eukaryotes they have a broader range of functions, including cell differentiation and growth, wound healing, detoxification and cell signalling [PUBMED:8805580].

The copper amine oxidases occur as mushroom-shaped homodimers of 70-95 kDa, each monomer containing a copper ion and a covalently bound redox cofactor, topaquinone (TPQ). TPQ is formed by post-translational modification of a conserved tyrosine residue. The copper ion is coordinated with three histidine residues and two water molecules in a distorted square pyramidal geometry, and has a dual function in catalysis and TPQ biogenesis. The catalytic domain is the largest of the 3-4 domains found in copper amine oxidases, and consists of a beta sandwich of 18 strands in two sheets. The active site is buried and requires a conformational change to allow the substrate access. The two N-terminal domains share a common structural fold, its core consisting of a five-stranded antiparallel beta sheet twisted around an alpha helix. The D1 domains from the two subunits comprise the stalk, of the mushroom-shaped dimer, and interact with each other but do not pack tightly against each other [PUBMED:8591028, PUBMED:10576737].

This entry represents a domain found at the N-terminal of certain copper amine oxidases, as well as in related proteins such as cell wall hydrolase and N-acetylmuramoyl-L-alanine amidase. This domain consists of a five-stranded antiparallel beta-sheet twisted around an alpha helix [PUBMED:8591028, PUBMED:10576737].

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(134)
Full
(2772)
Representative proteomes NCBI
(2618)
Meta
(19)
RP15
(649)
RP35
(941)
RP55
(984)
RP75
(1082)
Jalview View  View  View  View  View  View  View  View 
HTML View  View  View  View  View  View     
PP/heatmap 1 View  View  View  View  View     
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(134)
Full
(2772)
Representative proteomes NCBI
(2618)
Meta
(19)
RP15
(649)
RP35
(941)
RP55
(984)
RP75
(1082)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(134)
Full
(2772)
Representative proteomes NCBI
(2618)
Meta
(19)
RP15
(649)
RP35
(941)
RP55
(984)
RP75
(1082)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Pfam-B_46519 (release 14.0)
Previous IDs: none
Type: Domain
Author: Fenech M
Number in seed: 134
Number in full: 2772
Average length of the domain: 86.20 aa
Average identity of full alignment: 21 %
Average coverage of the sequence by the domain: 23.12 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 23193494 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 21.7 21.7
Trusted cut-off 21.7 21.7
Noise cut-off 21.6 21.6
Model length: 93
Family (HMM) version: 6
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Show

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Interactions

There are 2 interactions for this family. More...

Cu_amine_oxidN1 Cu_amine_oxid

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the Cu_amine_oxidN1 domain has been found. There are 32 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...