Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
0  structures 8  species 0  interactions 8  sequences 2  architectures

Family: ATP-synt_E_2 (PF08112)

Summary: ATP synthase epsilon subunit

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

The Pfam group coordinates the annotation of Pfam families in Wikipedia, but we have not yet assigned a Wikipedia article to this family. If you think that a particular Wikipedia article provides good annotation, please let us know.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

ATP synthase epsilon subunit Provide feedback

This family consists of epsilon subunits of the ATP synthase. The ATP synthase complex is composed of an oligomeric transmembrane sector (CF0), and a catalytic core (CF1). CF1 is composed of 5 subunits, of which the epsilon subunit functions as a potent inhibitor of ATPase activity in both soluble and bound CF1. Only when the epsilon inhibition is disabled is high ATPase activity detected in ATPase [1]

Literature references

  1. Wetzel CM, McCarty RE; , Plant Physiol 1993;102:251-259.: Aspects of Subunit Interactions in the Chloroplast ATP Synthase (II. Characterization of a Chloroplast Coupling Factor 1-Subunit III Complex from Spinach Thylakoids). PUBMED:12231816 EPMC:12231816


This tab holds annotation information from the InterPro database.

InterPro entry IPR012508

Transmembrane ATPases are membrane-bound enzyme complexes/ion transporters that use ATP hydrolysis to drive the transport of protons across a membrane. Some transmembrane ATPases also work in reverse, harnessing the energy from a proton gradient, using the flux of ions across the membrane via the ATPase proton channel to drive the synthesis of ATP.

There are several different types of transmembrane ATPases, which can differ in function (ATP hydrolysis and/or synthesis), structure (e.g., F-, V- and A-ATPases, which contain rotary motors) and in the type of ions they transport [PUBMED:15473999, PUBMED:15078220]. The different types include:

  • F-ATPases (ATP synthases, F1F0-ATPases), which are found in mitochondria, chloroplasts and bacterial plasma membranes where they are the prime producers of ATP, using the proton gradient generated by oxidative phosphorylation (mitochondria) or photosynthesis (chloroplasts).
  • V-ATPases (V1V0-ATPases), which are primarily found in eukaryotes and they function as proton pumps that acidify intracellular compartments and, in some cases, transport protons across the plasma membrane [PUBMED:20450191]. They are also found in bacteria [PUBMED:9741106].
  • A-ATPases (A1A0-ATPases), which are found in Archaea and function like F-ATPases, though with respect to their structure and some inhibitor responses, A-ATPases are more closely related to the V-ATPases [PUBMED:18937357, PUBMED:1385979].
  • P-ATPases (E1E2-ATPases), which are found in bacteria and in eukaryotic plasma membranes and organelles, and function to transport a variety of different ions across membranes.
  • E-ATPases, which are cell-surface enzymes that hydrolyse a range of NTPs, including extracellular ATP.

A-ATPases (or A1A0-ATPase) (EC) are found exclusively in Archaea and display a close resemblance in structure and subunit composition with V-ATPases, although their function in both ATP synthesis and ATP hydrolysis is closer to that of F-ATPases [PUBMED:10340845]. A-ATPases are composed of two linked complexes: the A1 complex consisting of seven subunits contains the catalytic core that synthesizes/hydrolyses ATP, while the A0 complex consisting of at least two subunits forms the membrane-spanning pore [PUBMED:8702544]. The rotary motor in A-ATPases is composed of only two subunits, the stator subunit I and the rotor subunit C [PUBMED:15168615]. A-ATPases may have arisen as an adaptation to the different cellular needs and the more extreme environmental conditions faced by Archaeal species.

The epsilon subunit is the smallest (7kDa) of those found in the A1 complex. Unlike the A, B and C subunits, the epsilon subunit does not have a homologous counterpart in F- or V-ATPases [PUBMED:2147683].

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the UniProtKB sequence database, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(2)
Full
(8)
Representative proteomes UniProt
(32)
NCBI
(23)
Meta
(0)
RP15
(1)
RP35
(1)
RP55
(1)
RP75
(1)
Jalview View  View  View  View  View  View  View  View   
HTML View  View               
PP/heatmap 1 View               

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(2)
Full
(8)
Representative proteomes UniProt
(32)
NCBI
(23)
Meta
(0)
RP15
(1)
RP35
(1)
RP55
(1)
RP75
(1)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(2)
Full
(8)
Representative proteomes UniProt
(32)
NCBI
(23)
Meta
(0)
RP15
(1)
RP35
(1)
RP55
(1)
RP75
(1)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download    
Gzipped Download   Download   Download   Download   Download   Download   Download   Download    

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Short protein clustering
Previous IDs: none
Type: Family
Sequence Ontology: SO:0100021
Author: Lee SC
Number in seed: 2
Number in full: 8
Average length of the domain: 49.40 aa
Average identity of full alignment: 39 %
Average coverage of the sequence by the domain: 61.72 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 47079205 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 25.0 25.0
Trusted cut-off 25.3 26.8
Noise cut-off 24.7 23.6
Model length: 56
Family (HMM) version: 12
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Hide

Weight segments by...


Change the size of the sunburst

Small
Large

Colour assignments

Archea Archea Eukaryota Eukaryota
Bacteria Bacteria Other sequences Other sequences
Viruses Viruses Unclassified Unclassified
Viroids Viroids Unclassified sequence Unclassified sequence

Selections

Align selected sequences to HMM

Generate a FASTA-format file

Clear selection

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.