Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
24  structures 24  species 3  interactions 29  sequences 4  architectures

Family: Anthrax-tox_M (PF09156)

Summary: Anthrax toxin lethal factor, middle domain

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Anthrax toxin". More...

Anthrax toxin Edit Wikipedia article

Anthrax toxin lethal factor middle domain
PDB 1zxv EBI.jpg
x-ray crystal structure of the anthrax lethal factor bound to a small molecule inhibitor, bi-mfm3, 3-{5-[5-(4-chloro-phenyl)-furan-2-ylmethylene]-4-oxo-2-thioxo-thiazolidin-3-yl}-propionic acid.
Symbol Anthrax-tox_M
Pfam PF09156
InterPro IPR015239
SCOP 1j7n
Anthrax toxin lethal factor N and C terminal domains
PDB 1pwq EBI.jpg
crystal structure of anthrax lethal factor complexed with thioacetyl-tyr-pro-met-amide, a metal-chelating peptidyl small molecule inhibitor
Symbol ATLF
Pfam PF07737
InterPro IPR014781
SCOP 1pwq
Anthrax toxin LF subunit
Symbol Anthrax_toxA
Pfam PF03497
SCOP 1jky
Figure 1. Electron micrograph of the anthrax causing bacteria, Bacillus anthracis.

Anthrax toxin is a three-protein exotoxin secreted by virulent strains of the bacterium, Bacillus anthracis—the causative agent of anthrax. The toxin was first discovered by Harry Smith in 1954.[1] Anthrax toxin is composed of a cell-binding protein, known as protective antigen (PA), and two enzyme components, called edema factor (EF) and lethal factor (LF). These three protein components act together to impart their physiological effects. Assembled complexes containing the toxin components are endocytosed. In the endosome, the enzymatic components of the toxin translocate into the cytoplasm of a target cell. Once in the cytosol, the enzymatic components of the toxin disrupts various immune cell functions, namely cellular signaling and cell migration. The toxin may even induce cell lysis, as is observed for macrophage cells. Anthrax toxin ultimately allows the bacteria to evade the immune system, proliferate, and ultimately kill the host animal.[2] Research on anthrax toxin also provides insight into the generation of macromolecular assemblies, and on protein translocation, pore formation, endocytosis, and other biochemical processes.

Bacillus anthracis virulence factors

Anthrax is a disease caused by Bacillus anthracis, a spore-forming, Gram positive, rod-shaped bacterium (Fig. 1). The lethality of the disease is caused by the bacterium's two principal virulence factors: (i) the polyglutamic acid capsule, which is anti-phagocytic, and (ii) the tripartite protein toxin, called anthrax toxin. Anthrax toxin is a mixture of three protein components: (i) protective antigen (PA), (ii) edema factor (EF), and (iii) lethal factor (LF).

Anthrax toxin is an A/B toxin

Interestingly, each individual anthrax toxin protein is, in fact, nontoxic. Toxic symptoms are not observed when these proteins are injected individually into laboratory animals. However, the co-injection of PA and EF causes edema, and the co-injection of PA and LF is lethal. The former combination is called edema toxin, and the latter combination is called lethal toxin. Thus the manifestation of physiological symptoms requires PA, in either case.

The PA requirement observed in animal-model experiments demonstrates a common paradigm for bacterial toxins, called the A / B paradigm. The A component is enzymatically active, and the B component is the cell binding component. Anthrax toxin, in fact, is of the form A2B, where the two enzymes, EF and LF, are the A components and PA is the B component. Thus PA acts as a Trojan Horse, which carries EF and LF through the plasma membrane into the cytosol, where they may then catalyze reactions that disrupt normal cellular physiology.

Anthrax toxin assembly and translocation

Diagram of the actions of the secreted anthrax toxins.

Anthrax toxin protein components must assemble into holotoxin complexes to function. In order for LF and EF to function inside a target cell, they must localize to the cell and enter its cytoplasm. Through a series of steps, PA can translocate EF and LF into the cell (Fig. 2). This process starts when the 83-kDa form of PA, called PA83, binds to an anthrax toxin receptor. There are two known homologous receptors, which bind to PA83, called tumor endothelium marker-8 (TEM8) and capillary morphogenesis protein 2 (CMG2).[3] Then a 20 kDa fragment (PA20) is cleaved off PA83's amino terminus by membrane endoproteases from the furin family. When PA20 dissociates, the remaining receptor-bound portion of PA, called PA63, may assemble into either a heptameric[4] or octameric[5] ring-shaped oligomer. This ring-shaped oligomer is often referred to as the pre-pore (or pre-channel) form of PA, since later in the pathway it will become a translocase pore (or channel). The surface of the pre-pore oligomer, which was exposed upon release of the PA20 moiety, can then bind to LF and EF.[6] The heptameric and octameric forms of the PA oligomer may then bind with up to three or four molecules of EF and/or LF, respectively.[5][7] The cell then endocytoses these assembled complexes and carries them to an acidic compartment in the cell. The low pH encountered in the endosome causes the PA63 pre-channel to convert into a cation-selective channel. EF and LF are driven through the channel by a pH gradient, allowing the enzyme factors to enter the cytosol.[8]

Enzyme function of LF and EF

Once in the cytosol, the EF and LF then carry out their respective damage-inducing processes.[9]

  • EF acts as a Ca2+ and calmodulin dependent adenylate cyclase that greatly increases the level of cAMP in the cell. This increase in cAMP upsets water homeostasis, severely throws the intracellular signaling pathways off balance, and impairs macrophage function, allowing the bacteria to further evade the immune system.
  • LF also helps the bacteria evade the immune system through killing macrophages. Once in these cells, LF acts as a Zn2+-dependent endoprotease that snips off the N-terminus of mitogen-activated protein kinase kinases (MAPKK). This inhibits these kinases by not allowing them to efficiently bind to their substrates, which leads to altered signaling pathways and ultimately to apoptosis.

Thus, the synergistic effect of these three proteins leads to cellular death through a cascade of events that allow the proteins to enter the cell and disrupt cellular function.

Extracellular toxin structure-function relationship

The mechanism of anthrax toxin action is the result of the molecular structures of the three toxin proteins in combination with biomolecules of the host cell. The molecular interactions are apparent upon performing a detailed analysis of the structures of PA, EF, LF, and the cellular receptors (ANTXR1 and ANTXR2). Structures for the toxin molecules (Figs. 3–5), the receptor, and for the complexes of the molecules all provided insight on the synergistic actions of these proteins. Analyses on binding sites and conformational changes augmented the structural studies, elucidating the functions of each domain of PA, LF, and EF, as briefly outlined in Table 1.

The structure of PA was the first to be determined (Fig. 3).[10] This structure and that of its cellular receptor shed much light on the specificity of recognition and binding.[11] This specificity of PA and the receptor CMG2 (similar to type I integins) is due to interactions through a metal ion dependent adhesion site (MIDAS), a hydrophobic groove, and a β-hairpin projection. These all contribute to a tight interaction in which much protein surface area on CMG2 (and TEM8) is buried.[12]

Ribbon diagram of a PA63 heptamer forming a pre-pore.

Petosa et al.solved the structure of a PA63 heptamer at 4.5 Ã… (0.45 nm).[10] The structure they solved was of a non-membrane bound pre-pore, the conformation of the heptamer before the complex extends a β-barrel through the plasma membrane to shuttle the LF and EF into the cytosol.

Heptamerization and pore formation is sterically hindered by the PA20 fragment, but when it is removed from the top of the monomer, the pre-pore is quickly formed. The heptamer formation causes no major changes in the conformation of each individual monomer, but by coming together, more than 15400 Ų (154 nm²) of protein surface is buried. This buried surface consists mostly of polar or charged side groups from domains 1 and 2.[10]

PA also forms an octameric pre-channel structure.[5] The octameric form was shown to be more thermostable than the heptameric form, and hence the octameric oligomer can persist in the plasma of the host during an anthrax infection.[5]

PA63 octamer prechannel (3HVD)

During the oligomerization of PA63, molecules of EF and/or LF rapidly and simultaneously bind to the PA prechannel. This binding occurs because after removing the PA20 domain, a large hydrophobic surface is uncovered on domain 1 of PA63. Domain 1 provides a large surface that the interacts with the N-terminus of EF and LF,[13] which is almost completely homologous for the first ~36 residues and similar in tertiary structure for the first ~250 residues.[14] Studies on the binding region of LF and EF demonstrated that a large surface area contacts with domain 1 of two adjacent PA63 molecules when in the heptamer conformation.[15] This large binding area explains why previous studies could only bind up to three molecules on a PA63 heptamer. The co-crystal structure of the PA octamer in complex with N-terminal LF revealed that the binding interaction is, in fact, two discontinuous sites.[13] One site, termed the C-terminal subsite, resembles a classic "hot-spot" with predicted salt-bridges and electrostatic interactions. The other site, termed the alpha-clamp subsite, is a deep cleft that nonspecifically binds the N-terminal alpha helix and short beta strand of LF, guiding the N-terminus of the substrate towards the PA prechannel lumen. In this manner, the alpha clamp aids in protein translocation, nonspecifically binding and subsequently unfolding secondary structure as it unfurls from the substrate.[16] The LF/EF binding site is now being utilized for delivery of therapeutics via fusion proteins.

Upon formation of the prepore and attachment of LF and/or EF, the heptamer migrates to a lipid raft where it is rapidly endocytosed. Endocytosis occurs as a result of a series of events. This begins when CMG2 or TEM8 is palmitoylated, which inhibits the association of the receptor with lipid rafts. This inhibits the receptor from being endocytosed before PA83 is cleaved and before LF or EF can associate with the heptamer. Reassociation of the receptor with the cholesterol and glycosphigolipid-rich microdomains (lipid rafts) occurs when PA63 binds to the receptor and heptamerizes. Once the receptor and PA returns to the lipid raft, E3 ubiquitin ligase Cb1 ubiquitinates the cytoplasmic tail of the receptor, signaling the receptor and associated toxin proteins for endocytosis. Dynamin and Eps15 are required for this endocytosis to occur, indicating that anthrax toxin enters the cell via the clathrin-dependent pathway.[17]

As discussed, each molecule interacts with several others in order to induce the endocytosis of the anthrax toxin. Once inside, the complex is transferred to an acidic compartment, where the heptamer, still in the non-membrane-spanning pre-pore conformation, is prepared for translocation of EF and LF into the cytosol.[18]

Structure-function relationship from vesicle to cytosol

Pore formation

At first glance, the primary sequence of PA does not look like that of a membrane-spanning protein. A hydrophobicity plot lacking any patterns which are common to possible membrane-spanning domains. The structures of other multimeric membrane proteins (such as diphtheria toxin) provide the answer to how PA manages to span the membrane. It is thought that PA acts like these multimeric membrane proteins that form β-barrels made from stretchs of both polar and non-polar amino acids from each monomer.[10]

Greek-key motif.

The formation of the β-barrel pore is facilitated with a drop in pH. To form the barrel when the pH drops, PA63 domain 2 must undergo the greatest conformation change. Upon examination of the structure of domain 2 (Fig. 7), one can see that this domain contains a Greek-key motif (the gold portion in Fig. 7). A general schematic of a Greek-key motif is shown in Fig. 8. Attached to the Greek-key in domain 2 is a large disordered loop. The necessity of this loop in pore formation is shown through using mutagenesis and proteolysis of the loop with chymotrypsin. Additional electrophysiological measurements of cysteine substitutions place the amino acids of this loop inside the lumen of the membrane inserted pore. The disordered loop in domain 2 also has a pattern of alternating hydrophobic and hydrophilic amino acids, which is a pattern conserved in the membrane-spanning portions of porins. The only problem is that the loop is not large enough to span a membrane in a β-barrel. This membrane insertion could only occur with additional conformational changes. A large conformational change takes place where the Greek-key motif unfolds, forming a β-hairpin that projects downward into the membrane and forms a β-barrel with the other 6 monomers of the complex (figures 9a and 9b). The final pore has a diameter of 12 Ã… (1.2 nm), which fits the theoretical value of this model.[10]

This model would require large conformational changes in domain 2 along with the breaking of many hydrogen bonds as the Greek-key motif peels away from the center of the domain. Petosa et al. proposed a model of how this occurs.[10] Insertion of the PA Greek key motifs into the membrane occurs when the heptamer is acidified. On artificial bilayers, this occurs when the pH is dropped from 7.4 to 6.5, suggesting that the trigger for insertion involves a titration of histidines. This indeed fits the sequence of PA since domain 2 contains a number of histidines (shown as asterisks in figure 9a). Three histidine residues are found in the disordered loop, one of which lies with a Greek-key histidine within a cluster of polar amino acids. This cluster (including the two histidines, three arginines and one glutamate) is embedded at the top of the Greek-key motif, so it is easy to see that the protonation of these histidines would disrupt the cluster. Furthermore, another histidine is located at the base of the Greek-key motif along with a number of hydrophobic residues (on the green segment in figures 7 and 9a). At pH 7.4 this segment is ordered, but when the crystals are grown at pH 6.0, it becomes disordered. This order to disorder transition is the initial step of PA membrane insertion.

PA is endocytosed as a soluble heptamer attached to its receptors, with LF or EF attached to the heptamer as cargo. The first step after endocytosis is the acidification of the endocytotic vesicle. The acidification plays two roles in the lifespan of the toxin. First, it helps to relax the tight grip of the CMG2 or TEM8 receptor on PA, facilitating the pore formation (the different receptors allow for insertion at a slightly different pH).[12] Second, the drop in pH causes a disordered loop and a Greek-key motif in the PA domain 2 to fold out of the heptamer pre-pore and insert through the wall of the acidic vesicle, leading to pore formation (Figures 7–9).

Santelli et al. explained more about the process after they determined the crystal structure of the PA/CMG2 complex.[12] The structure of this complex shows the binding of CMG2 by both domain 2 and 4 of PA. This interaction demonstrates less freedom to unfold the Greek key. Further analysis shows that seven of the nine histidines in PA are on the domain 2/domain 4 interface. Protonation of these histidines causes the domains to separate enough to allow the Greek-key to flop out and help form the β-hairpin involved in insertion. In addition, when PA binds to CMG2, insertion no longer occurs at a pH of 6.5, as it does when inserted into an artificial membrane. Instead it requires a pH of 5.0 for insertion in natural cells. This difference was explained to be the result of the pocket next to the MIDAS motif in CMG2. This pocket contains a histidine buried at the bottom where domain 2 attaches. This histidine is protonated at a lower pH and adds greater stability to PA. This added stability keeps the Greek-key from being able to move until more acidic conditions are met. These histidines all work in conjunction to keep the heptamer from inserting prematurely before endocytosis occurs.

Santelli and colleagues (Fig. 10) also built a hypothetical structure of the membrane-inserted PA/CMG2 structure. This model shows that the β-barrel is about 70 Ã… (7 nm) long, 30 Ã… (3 nm) of which span the membrane and the 40 Ã… (4 nm) gap is actually filled in with the rest of the extracellular portion of the CMG2 receptor (~100 residues). CMG2 provides additional support to the pore.

Protein translocation

Diagram of protein translocation.

Several recent studies demonstrate how the PA63 pore allows the EF and LF into the cytoplasm when its lumen is so small. The lumen on the PA63 pore is only 15 Ã… (1.5 nm) across, which is much smaller than the diameter of LF or EF. Translocation occurs through a series of events which begin in the endosome as it acidifies. LF and EF are pH sensitive, and as the pH drops, their structures lose stability. Below a pH of 6.0 (the pH in an endosome), both LF and EF become disordered molten globules. When a molecule is in this conformation, the N-terminus is freed and drawn into the pore by the proton gradient and positive transmembrane potential. A ring of seven phenylalanines at the mouth endosome side of the pore (phenylalanine clamp) assists in the unfolding of LF or EF by interacting with the hydrophobic residues found in LF or EF. The proton gradient then begins to lace the protein though the pore. The lacing mechanism is driven by the gradient, but requires the phenylalanine clamp for a ratcheting motion. The first 250 residues of EF and LF have an irregular alternating sequence of basic, acidic, and hydrophobic residues. The interplay between the phenylalanine clamp and the protonation state cause a ratcheting effect that drives the protein though until enough has crossed into the cytoplasm to drag the rest through the pore as the N-terminus refolds (Fig. 11).

Questions for future research

Despite the recent advances in the understanding of anthrax toxin, there are still several missing details in the action of anthrax toxin. These missing details leave questions about the molecular actions inside the cell. What role does EF play in hindering the immune system? Does it work with LF for its effect? How do the enzymes refold after translocation? Is there a chaperonin? Two proteins: KIF1C and the proteasome have shown a contribution to the effect of lethal toxin, but how do they contribute? Does LF target certain MAPKKs with a greater specificity? Does LF target other molecules too?


  1. ^ Smith H, Keppie J (1954). "Observations on experimental anthrax: demonstration of a specific lethal factor produced in vivo by Bacillus anthracis". Nature 173 (4410): 869–70. doi:10.1038/173869a0. PMID 13165673. 
  2. ^ Maldonado-Arocho et al. (2009). "Anthrax Toxin". Microbial Toxins: Current Research and Future Trends. Caister Academic Press. ISBN 978-1-904455-44-8. 
  3. ^ Sternbach, G. (2003). "The history of anthrax". Journal of Emergency Medicine 24 (4): 463–467. doi:10.1016/S0736-4679(03)00079-9. PMID 12745053.  edit
  4. ^ Green, B. D.; Battisti, L.; Koehler, T. M.; Thorne, C. B.; Ivins, B. E. (1985). "Demonstration of a capsule plasmid in Bacillus anthracis". Infection and immunity 49 (2): 291–297. PMC 262013. PMID 3926644.  edit
  5. ^ a b c d Kintzer, A. F.; Thoren, K. L.; Sterling, H. J.; Dong, K. C.; Feld, G. K.; Tang, I. I.; Zhang, T. T.; Williams, E. R.; Berger, J. M.; Krantz, B. A. (2009). "The Protective Antigen Component of Anthrax Toxin Forms Functional Octameric Complexes". Journal of Molecular Biology 392 (3): 614–629. doi:10.1016/j.jmb.2009.07.037. PMC 2742380. PMID 19627991.  edit
  6. ^ Abrami L, Reig N, van der Goot FG (2005). "Anthrax toxin: the long and winding road that leads to the kill". Trends Microbiol 13 (2): 72–78. doi:10.1016/j.tim.2004.12.004. PMID 15680766. 
  7. ^ Grinberg LM, Abramova FA, Yampolskaya OV, Walker DH, Smith JH (2001). "Quantitative pathology of inhalational anthrax I: quantitative microscopic findings". Mod Pathol 14 (5): 482–495. doi:10.1038/modpathol.3880337. PMID 11353060. 
  8. ^ Friedlander AM, Bhatnagar R, Leppla SH, Johnson L, Singh Y (1993). "Characterization of macrophage sensitivity and resistance to anthrax lethal toxin". Infect Immun 61 (1): 245–252. PMC 302711. PMID 8380282. 
  9. ^ Singh Y, Leppla SH, Bhatnagar R, Friedlander AM. (1989). "Internalization and processing of Bacillus anthracis lethal toxin by toxin-sensitive and -resistant cells". J Biol Chem 264 (19): 11099–11102. PMID 2500434. 
  10. ^ a b c d e f Petosa, C.; Collier, R. J.; Klimpel, K. R.; Leppla, S. H.; Liddington, R. C. (1997). "Crystal structure of the anthrax toxin protective antigen.". Nature 385 (6619): 833–838. doi:10.1038/385833a0. PMID 9039918. 
  11. ^ Lacy, D. B.; Wigelsworth, D. J.; Scobie, H. M.; Young, J. A.; Collier, R. J. Crystal structure of the von Willebrand factor A domain of human capillary morphogenesis protein 2: an anthrax toxin receptor. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 6367–6372.
  12. ^ a b c Santelli, E.; Bankston, L. A.; Leppla, S. H.; Liddington, R. C. Crystal structure of a complex between anthrax toxin and its host cell receptor. Nature. 2004, 430, 905–908.
  13. ^ a b Feld GK, Thoren KL, Kintzer AF, Sterling HJ, Tang II, Greenberg SG, Williams ER, Krantz BA. Structural basis for the unfolding anthrax lethal factor by protective antigen oligomers. Nat Struct Mol Biol. 2010, 17(11):1383-80.
  14. ^ Pannifer, A. D.; Wong, T. Y.; Schwarzenbacher, R.; Renatus, M.; Petosa, C.; Bienkowska, J.; Lacy, D. B.; Collier, R. J.; Park, S.; Leppla, S. H.; Hanna, P.; Liddington, R. C. Crystal structure of the anthrax lethal factor. Nature. 2001, 414, 230–233.
  15. ^ Melnyk, R. A.; Hewitt, K. M.; Lacy, D. B.; Lin, H. C.; Gessner, C. R.; Li, S.; Woods, V. L.; Collier, R. J. Structural Determinates for the Binding of Anthrax Lethal Factor to Oligomeric Protective Antigen. J. Biol. Chem. 2006, 281, 1630–1635.
  16. ^ Feld GK, Brown MJ, Krantz BA. Ratcheting up protein translocation with anthrax toxin. Prot Sci. 2012, 21(5):606-24.
  17. ^ Abrami, L.; Liu, S.; Cosson, P.; Leppla, S. H.; van der Goot, F. G. Anthrax toxin triggers endocytosis of its receptor via a lipid raft-mediated clathrin-dependent process. J. Cell Biol. 2003, 160, 321–328.
  18. ^ Mourez, M. Anthrax toxins. Rev. Physiol. Biochem. Pharmacol. 2004, 152, 135–164.

External links

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Anthrax toxin lethal factor, middle domain Provide feedback

Members of this family, which are predominantly found in anthrax toxin lethal factor, adopt a structure consisting of a core of antiparallel beta sheets and alpha helices. They form a long deep groove within the protein that anchors the 16-residue N-terminal tail of MAPKK-2 before cleavage. It has been noted that this domain resembles the ADP-ribosylating toxin from Bacillus cereus, but the active site has been modified to augment substrate recognition [1].

Literature references

  1. Pannifer AD, Wong TY, Schwarzenbacher R, Renatus M, Petosa C, Bienkowska J, Lacy DB, Collier RJ, Park S, Leppla SH, Hanna P, Liddington RC; , Nature. 2001;414:229-233.: Crystal structure of the anthrax lethal factor. PUBMED:11700563 EPMC:11700563

External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR015239

Anthrax toxin is a plasmid-encoded toxin complex produced by the Gram-positive, spore-forming bacteria, Bacillus anthracis. The toxin consists of three non-toxic proteins: the protective antigen (PA), the lethal factor (LF) and the edema factor (EF) [PUBMED:14570563]. These component proteins self-assemble at the surface of host cell receptors, yielding a series of toxic complexes that can produce shock-like symptoms and death. Anthrax toxin is one of a large group of Bacillus and Clostridium exotoxins referred to as binary toxins, forming independent enzymatic (A moiety) and binding (B moiety) components. The LF and EF proteins are the enzymes (A moiety) that act on cytosolic substrates, while PA is a multi-functional protein (B moiety) that binds to cell surface receptors, mediates the assembly and internalisation of the complexes, and delivers them to the host cell endosome [PUBMED:17335404]. Once PA is attached to the host receptor [PUBMED:17381430], it must then be cleaved by a host cell surface (furin family) protease before it is able to bind EF and LF. The cleavage of the N terminus of PA enables the C-terminal fragment to self-associate into a ring-shaped heptameric complex (prepore) that can bind LF or EF competitively. The PA-LF/EF complex is then internalised by endocytosis, and delivered to the endosome, where PA forms a pore in the endosomal membrane in order to translocate LF and EF to the cytosol. LF is a Zn-dependent metalloprotease that cleaves and inactivates mitogen-activated protein (MAP) kinases, kills macrophages, and causes death of the host by inhibiting cell proliferation [PUBMED:14616089, PUBMED:11700563]. EF is a calcium-and calmodulin-dependent adenylyl cyclase that can cause edema (fluid-filled swelling) when associated with PA. EF is not toxic by itself, and is required for the survival of germinated Bacillus spores within macrophages at the early stages of infection. EF dramatically elevates the level of host intracellular cAMP, a ubiquitous messenger that integrates many processes of the cell; increases in cAMP can interfere with host intracellular signalling [PUBMED:15131111].

This entry represents the central domain found in the lethal factor protein of anthrax toxin.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan ADP-ribosyl (CL0084), which has the following description:

The members of this clan all represent ADP-ribosylating catalytic domains. The structurally conserved regions are located at the NAD binding region [1]. According to SCOP, the ADP-ribosylation domain is thought to have an "unusual fold".

The clan contains the following 7 members:

ADPrib_exo_Tox Anthrax-tox_M ART Diphtheria_C Enterotoxin_a PARP Pertussis_S1


We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

Representative proteomes NCBI
Jalview View  View    View  View  View  View   
HTML View  View    View  View  View     
PP/heatmap 1 View    View  View  View     
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

Representative proteomes NCBI

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

Representative proteomes NCBI
Raw Stockholm Download   Download     Download   Download   Download   Download    
Gzipped Download   Download     Download   Download   Download   Download    

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...


This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: pdb_1j7n
Previous IDs: none
Type: Domain
Author: Sammut SJ
Number in seed: 1
Number in full: 29
Average length of the domain: 261.30 aa
Average identity of full alignment: 98 %
Average coverage of the sequence by the domain: 35.75 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 80369284 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 83.0 83.0
Trusted cut-off 108.4 108.3
Noise cut-off 82.9 82.9
Model length: 287
Family (HMM) version: 6
Download: download the raw HMM for this family

Species distribution

Sunburst controls


Weight segments by...

Change the size of the sunburst


Colour assignments

Archea Archea Eukaryota Eukaryota
Bacteria Bacteria Other sequences Other sequences
Viruses Viruses Unclassified Unclassified
Viroids Viroids Unclassified sequence Unclassified sequence


Align selected sequences to HMM

Generate a FASTA-format file

Clear selection

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls


The tree shows the occurrence of this domain across different species. More...


Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.


There are 3 interactions for this family. More...

ATLF ATLF Anthrax-tox_M


For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the Anthrax-tox_M domain has been found. There are 24 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...