Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
0  structures 655  species 0  interactions 821  sequences 8  architectures

Family: Med1 (PF10744)

Summary: Mediator of RNA polymerase II transcription subunit 1

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "MED1". More...

MED1 Edit Wikipedia article

MED1
PDB 1rjk EBI.jpg
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesMED1, CRSP1, CRSP200, DRIP205, DRIP230, PBP, PPARBP, PPARGBP, RB18A, TRAP220, TRIP2, mediator complex subunit 1
External IDsOMIM: 604311 MGI: 1100846 HomoloGene: 21002 GeneCards: MED1
Gene location (Human)
Chromosome 17 (human)
Chr.Chromosome 17 (human)[1]
Chromosome 17 (human)
Genomic location for MED1
Genomic location for MED1
Band17q12Start39,404,285 bp[1]
End39,451,272 bp[1]
RNA expression pattern
PBB GE PPARBP 203496 s at fs.png

PBB GE PPARBP 203497 at fs.png
More reference expression data
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_004774

NM_001080118
NM_013634
NM_134027
NM_001361950
NM_001361951

RefSeq (protein)

NP_004765

NP_001073587
NP_038662
NP_598788
NP_001348879
NP_001348880

Location (UCSC)Chr 17: 39.4 – 39.45 MbChr 11: 98.15 – 98.19 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Mediator of RNA polymerase II transcription subunit 1 also known as DRIP205 or Trap220 is a subunit of the Mediator complex and is a protein that in humans is encoded by the MED1 gene.[5][6][7] MED1 functions as a nuclear receptor coactivator.

Med1
Identifiers
SymbolMed1
PfamPF10744
InterProIPR019680

Function

The activation of gene transcription is a multistep process that is triggered by factors that recognize transcriptional enhancer sites in DNA. These factors work with co-activators to direct transcriptional initiation by the RNA polymerase II apparatus. The mediator of RNA polymerase II transcription subunit 1 protein is a subunit of the CRSP (cofactor required for SP1 activation) complex, which, along with TFIID, is required for efficient activation by SP1. This protein is also a component of other multisubunit complexes [e.g., thyroid hormone receptor-(TR-) associated proteins that interact with TR and facilitate TR function on DNA templates in conjunction with initiation factors and cofactors]. It also regulates p53-dependent apoptosis and it is essential for adipogenesis. This protein is known to have the ability to self-oligomerize.[7]

Interactions

MED1 has been shown to interact with:

Protein family

This entry represents subunit Med1 of the Mediator complex. The Med1 forms part of the Med9 submodule of the Srb/Med complex. It is one of three subunits essential for viability of the whole organism via its role in environmentally-directed cell-fate decisions.[23]

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000125686 - Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000018160 - Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Zhu Y, Qi C, Jain S, Rao MS, Reddy JK (November 1997). "Isolation and characterization of PBP, a protein that interacts with peroxisome proliferator-activated receptor". J Biol Chem. 272 (41): 25500–6. doi:10.1074/jbc.272.41.25500. PMID 9325263.
  6. ^ Zhu Y, Qi C, Jain S, Le Beau MM, Espinosa R, Atkins GB, Lazar MA, Yeldandi AV, Rao MS, Reddy JK (October 1999). "Amplification and overexpression of peroxisome proliferator-activated receptor binding protein (PBP/PPARBP) gene in breast cancer". Proc Natl Acad Sci U S A. 96 (19): 10848–53. doi:10.1073/pnas.96.19.10848. PMC 17971. PMID 10485914.
  7. ^ a b "Entrez Gene: PPARBP PPAR binding protein".
  8. ^ Wang Q, Sharma D, Ren Y, Fondell JD (November 2002). "A coregulatory role for the TRAP-mediator complex in androgen receptor-mediated gene expression". J. Biol. Chem. 277 (45): 42852–8. doi:10.1074/jbc.M206061200. PMID 12218053.
  9. ^ Wada O, Oishi H, Takada I, Yanagisawa J, Yano T, Kato S (August 2004). "BRCA1 function mediates a TRAP/DRIP complex through direct interaction with TRAP220". Oncogene. 23 (35): 6000–5. doi:10.1038/sj.onc.1207786. PMID 15208681.
  10. ^ a b Ito M, Yuan CX, Malik S, Gu W, Fondell JD, Yamamura S, Fu ZY, Zhang X, Qin J, Roeder RG (March 1999). "Identity between TRAP and SMCC complexes indicates novel pathways for the function of nuclear receptors and diverse mammalian activators". Mol. Cell. 3 (3): 361–70. doi:10.1016/s1097-2765(00)80463-3. PMID 10198638.
  11. ^ a b Kitagawa H, Fujiki R, Yoshimura K, Mezaki Y, Uematsu Y, Matsui D, Ogawa S, Unno K, Okubo M, Tokita A, Nakagawa T, Ito T, Ishimi Y, Nagasawa H, Matsumoto T, Yanagisawa J, Kato S (June 2003). "The chromatin-remodeling complex WINAC targets a nuclear receptor to promoters and is impaired in Williams syndrome". Cell. 113 (7): 905–17. doi:10.1016/s0092-8674(03)00436-7. PMID 12837248.
  12. ^ a b Kang YK, Guermah M, Yuan CX, Roeder RG (March 2002). "The TRAP/Mediator coactivator complex interacts directly with estrogen receptors alpha and beta through the TRAP220 subunit and directly enhances estrogen receptor function in vitro". Proc. Natl. Acad. Sci. U.S.A. 99 (5): 2642–7. doi:10.1073/pnas.261715899. PMC 122401. PMID 11867769.
  13. ^ Zilliacus J, Holter E, Wakui H, Tazawa H, Treuter E, Gustafsson JA (April 2001). "Regulation of glucocorticoid receptor activity by 14--3-3-dependent intracellular relocalization of the corepressor RIP140". Mol. Endocrinol. 15 (4): 501–11. doi:10.1210/mend.15.4.0624. PMID 11266503.
  14. ^ Hittelman AB, Burakov D, Iñiguez-Lluhí JA, Freedman LP, Garabedian MJ (October 1999). "Differential regulation of glucocorticoid receptor transcriptional activation via AF-1-associated proteins". EMBO J. 18 (19): 5380–8. doi:10.1093/emboj/18.19.5380. PMC 1171607. PMID 10508170.
  15. ^ Maeda Y, Rachez C, Hawel L, Byus CV, Freedman LP, Sladek FM (July 2002). "Polyamines modulate the interaction between nuclear receptors and vitamin D receptor-interacting protein 205". Mol. Endocrinol. 16 (7): 1502–10. doi:10.1210/mend.16.7.0883. PMID 12089346.
  16. ^ Malik S, Wallberg AE, Kang YK, Roeder RG (August 2002). "TRAP/SMCC/mediator-dependent transcriptional activation from DNA and chromatin templates by orphan nuclear receptor hepatocyte nuclear factor 4". Mol. Cell. Biol. 22 (15): 5626–37. doi:10.1128/mcb.22.15.5626-5637.2002. PMC 133960. PMID 12101254.
  17. ^ Frade R, Balbo M, Barel M (December 2000). "RB18A, whose gene is localized on chromosome 17q12-q21.1, regulates in vivo p53 transactivating activity". Cancer Res. 60 (23): 6585–9. PMID 11118038.
  18. ^ Drané P, Barel M, Balbo M, Frade R (December 1997). "Identification of RB18A, a 205 kDa new p53 regulatory protein which shares antigenic and functional properties with p53". Oncogene. 15 (25): 3013–24. doi:10.1038/sj.onc.1201492. PMID 9444950.
  19. ^ Wallberg AE, Yamamura S, Malik S, Spiegelman BM, Roeder RG (November 2003). "Coordination of p300-mediated chromatin remodeling and TRAP/mediator function through coactivator PGC-1alpha". Mol. Cell. 12 (5): 1137–49. doi:10.1016/s1097-2765(03)00391-5. PMID 14636573.
  20. ^ Kodera Y, Takeyama K, Murayama A, Suzawa M, Masuhiro Y, Kato S (October 2000). "Ligand type-specific interactions of peroxisome proliferator-activated receptor gamma with transcriptional coactivators". J. Biol. Chem. 275 (43): 33201–4. doi:10.1074/jbc.C000517200. PMID 10944516.
  21. ^ Misra P, Qi C, Yu S, Shah SH, Cao WQ, Rao MS, Thimmapaya B, Zhu Y, Reddy JK (May 2002). "Interaction of PIMT with transcriptional coactivators CBP, p300, and PBP differential role in transcriptional regulation". J. Biol. Chem. 277 (22): 20011–9. doi:10.1074/jbc.M201739200. PMID 11912212.
  22. ^ Yuan CX, Ito M, Fondell JD, Fu ZY, Roeder RG (July 1998). "The TRAP220 component of a thyroid hormone receptor- associated protein (TRAP) coactivator complex interacts directly with nuclear receptors in a ligand-dependent fashion". Proc. Natl. Acad. Sci. U.S.A. 95 (14): 7939–44. doi:10.1073/pnas.95.14.7939. PMC 20908. PMID 9653119.
  23. ^ Boube M, Joulia L, Cribbs DL, Bourbon HM (July 2002). "Evidence for a mediator of RNA polymerase II transcriptional regulation conserved from yeast to man". Cell. 110 (2): 143–51. doi:10.1016/s0092-8674(02)00830-9. PMID 12150923.

Further reading

This article incorporates text from the public domain Pfam and InterPro: IPR019680

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This is the Wikipedia entry entitled "Mediator (coactivator)". More...

Mediator (coactivator) Edit Wikipedia article

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Mediator of RNA polymerase II transcription subunit 1 Provide feedback

Mediator complexes are basic necessities for linking transcriptional regulators to RNA polymerase II. This domain, Med1, is conserved from plants to fungi to humans and forms part of the Med9 submodule of the Srb/Med complex. it is one of three subunits essential for viability of the whole organism via its role in environmentally-directed cell-fate decisions [1]. Med1 is part of the tail region of the Mediator complex [3].

Literature references

  1. Boube M, Joulia L, Cribbs DL, Bourbon HM; , Cell. 2002;110:143-151.: Evidence for a mediator of RNA polymerase II transcriptional regulation conserved from yeast to man. PUBMED:12150923 EPMC:12150923

  2. Bourbon HM, Aguilera A, Ansari AZ, Asturias FJ, Berk AJ, Bjorklund S, Blackwell TK, Borggrefe T, Carey M, Carlson M, Conaway JW, Conaway RC, Emmons SW, Fondell JD, Freedman LP, Fukasawa T, Gustafsson CM, Han M, He X, Herman PK, Hinnebusch AG, Holmberg S, , Mol Cell. 2004;14:553-557.: A unified nomenclature for protein subunits of mediator complexes linking transcriptional regulators to RNA polymerase II. PUBMED:15175151 EPMC:15175151


This tab holds annotation information from the InterPro database.

InterPro entry IPR019680

The Mediator complex is a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. The Mediator complex, having a compact conformation in its free form, is recruited to promoters by direct interactions with regulatory proteins and serves for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. On recruitment the Mediator complex unfolds to an extended conformation and partially surrounds RNA polymerase II, specifically interacting with the unphosphorylated form of the C-terminal domain (CTD) of RNA polymerase II. The Mediator complex dissociates from the RNA polymerase II holoenzyme and stays at the promoter when transcriptional elongation begins.

The Mediator complex is composed of at least 31 subunits: MED1, MED4, MED6, MED7, MED8, MED9, MED10, MED11, MED12, MED13, MED13L, MED14, MED15, MED16, MED17, MED18, MED19, MED20, MED21, MED22, MED23, MED24, MED25, MED26, MED27, MED29, MED30, MED31, CCNC, CDK8 and CDC2L6/CDK11.

The subunits form at least three structurally distinct submodules. The head and the middle modules interact directly with RNA polymerase II, whereas the elongated tail module interacts with gene-specific regulatory proteins. Mediator containing the CDK8 module is less active than Mediator lacking this module in supporting transcriptional activation.

  • The head module contains: MED6, MED8, MED11, SRB4/MED17, SRB5/MED18, ROX3/MED19, SRB2/MED20 and SRB6/MED22.
  • The middle module contains: MED1, MED4, NUT1/MED5, MED7, CSE2/MED9, NUT2/MED10, SRB7/MED21 and SOH1/MED31. CSE2/MED9 interacts directly with MED4.
  • The tail module contains: MED2, PGD1/MED3, RGR1/MED14, GAL11/MED15 and SIN4/MED16.
  • The CDK8 module contains: MED12, MED13, CCNC and CDK8.

Individual preparations of the Mediator complex lacking one or more distinct subunits have been variously termed ARC, CRSP, DRIP, PC2, SMCC and TRAP.

This entry represents subunit Med1 of the Mediator complex. The Med1 forms part of the Med9 submodule of the Srb/Med complex. It is one of three subunits essential for viability of the whole organism via its role in environmentally-directed cell-fate decisions [PUBMED:12150923].

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the UniProtKB sequence database, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(70)
Full
(821)
Representative proteomes UniProt
(1240)
NCBI
(1767)
Meta
(0)
RP15
(180)
RP35
(386)
RP55
(612)
RP75
(790)
Jalview View  View  View  View  View  View  View  View   
HTML View  View               
PP/heatmap 1 View               

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(70)
Full
(821)
Representative proteomes UniProt
(1240)
NCBI
(1767)
Meta
(0)
RP15
(180)
RP35
(386)
RP55
(612)
RP75
(790)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(70)
Full
(821)
Representative proteomes UniProt
(1240)
NCBI
(1767)
Meta
(0)
RP15
(180)
RP35
(386)
RP55
(612)
RP75
(790)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download    
Gzipped Download   Download   Download   Download   Download   Download   Download   Download    

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Pfam-B_51442 (release 22.0)
Previous IDs: Med1-Trap220;
Type: Domain
Sequence Ontology: SO:0000417
Author: Wood V , Coggill P
Number in seed: 70
Number in full: 821
Average length of the domain: 343.10 aa
Average identity of full alignment: 21 %
Average coverage of the sequence by the domain: 38.40 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 45638612 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 21.5 21.5
Trusted cut-off 21.5 21.6
Noise cut-off 21.4 21.4
Model length: 415
Family (HMM) version: 9
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Hide

Weight segments by...


Change the size of the sunburst

Small
Large

Colour assignments

Archea Archea Eukaryota Eukaryota
Bacteria Bacteria Other sequences Other sequences
Viruses Viruses Unclassified Unclassified
Viroids Viroids Unclassified sequence Unclassified sequence

Selections

Align selected sequences to HMM

Generate a FASTA-format file

Clear selection

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.