Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
4  structures 224  species 2  interactions 246  sequences 7  architectures

Family: Vps36_ESCRT-II (PF11605)

Summary: Vacuolar protein sorting protein 36 Vps36

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

The Pfam group coordinates the annotation of Pfam families in Wikipedia, but we have not yet assigned a Wikipedia article to this family. If you think that a particular Wikipedia article provides good annotation, please let us know.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Vacuolar protein sorting protein 36 Vps36 Provide feedback

Vps36 is a subunit of ESCRT-II, a protein involved in driving protein sorting from endosomes to lysosomes. The GLUE domain of Vps36 allows for a tight interaction to occur between the protein and Vps28, a subunit of ESCRT-I. This interaction is critical for ubiquitinated cargo progression from early to late endosomes [1].

Literature references

  1. Teo H, Gill DJ, Sun J, Perisic O, Veprintsev DB, Vallis Y, Emr SD, Williams RL; , Cell. 2006;125:99-111.: ESCRT-I core and ESCRT-II GLUE domain structures reveal role for GLUE in linking to ESCRT-I and membranes. PUBMED:16615893 EPMC:16615893


External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR021648

Vps36 is a subunit of ESCRT-II, a protein involved in driving protein sorting from endosomes to lysosomes. The GLUE domain of Vps36 allows for a tight interaction to occur between the protein and Vps28, a subunit of ESCRT-I. This interaction is critical for ubiquitinated cargo progression from early to late endosomes [PUBMED:16615893].

The multivesicular body (MVB) protein-sorting pathway targets transmembrane proteins either for degradation or for function in the vacuole/lysosomes. The signal for entry into this pathway is monoubiquitination of protein cargo, which results in incorporation of cargo into luminal vesicles at late endosomes. Another crucial player is phosphatidylinositol 3-phosphate (PtdINS(3)P), which is enriched on early endosomes and on the luminal vesicles of MVBs. The ESCRT complexes are critical for MVB budding and sorting of monoubiquitinated cargo into the luminal vesicles. Various Ub-binding domains (UBDs), such as UIM, UEV and NZF are found in such machineries. The Vps 36 subunit of the ESCRT-II trafficking complex binds both phosphoinositides and ubiquitin. All members of the Vps36 family contain a divergent GRAM/PH-like domain and yeast and some other fungi have one or two NZF domains inserted in the GRAM/PH-like domain.

The N-terminal region of Vps36 (EAP45) has been named the GLUE (GRAM-like ubiquitin-binding in EAP45) domain. The GLUE domain acts as a central cog driving the endosomal ESCRT machinery, through simultaneous interactions with PtdIns3P-containing membranes, ubiquitin, and ESCRT-I. Like other known ubiquitin-binding domains, the GLUE domain interacts with the hydrophobic surface patch of ubiquitin. The GLUE domain is the first ubiquitin-binding domain shown to bind phosphoinositides, and the ability of the same domain to bind both ubiquitin and a phosphoinositide opens interesting possibilities for coordination of membrane interactions and cargo recognition [PUBMED:15755741, PUBMED:16615893, PUBMED:17057714, PUBMED:16615903, PUBMED:17034365].

The GLUE domain has a split PH-domain fold with two curved beta sheets and one long alpha helix. The two sheets (beta1-beta4 and beta5- beta7) form a beta barrel-like structure, the C-terminal alpha helix is wedged between the two beta sheets, covering a hydrophobic core. The Vps36 GLUE domain binds PtdIns3P via a positively charged lipid binding pocket, delineated by the variable loops beta1/beta2, beta5/beta6 and beta7/alpha1, in contrast to the vast majority of characterised PH domains, which use a different lipid binding pocket [PUBMED:16615893, PUBMED:17057714].

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan PH (CL0266), which has the following description:

Members of this clan share a PH-like fold. Many families in this clan bind to short peptide motifs in proteins and are involved in signalling.

The clan contains the following 33 members:

bPH_1 bPH_2 bPH_3 bPH_4 bPH_5 bPH_6 DCP1 DUF1448 FERM_C GRAM ICAP-1_inte_bdg Mcp5_PH PH PH_10 PH_11 PH_2 PH_3 PH_4 PH_5 PH_6 PH_7 PH_8 PH_9 PH_BEACH PID PID_2 PTB Ran_BP1 Rtt106 SSrecog Voldacs Vps36_ESCRT-II WH1

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(22)
Full
(246)
Representative proteomes NCBI
(261)
Meta
(0)
RP15
(52)
RP35
(88)
RP55
(142)
RP75
(174)
Jalview View  View  View  View  View  View  View   
HTML View  View  View  View  View  View     
PP/heatmap 1 View  View  View  View  View     
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(22)
Full
(246)
Representative proteomes NCBI
(261)
Meta
(0)
RP15
(52)
RP35
(88)
RP55
(142)
RP75
(174)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(22)
Full
(246)
Representative proteomes NCBI
(261)
Meta
(0)
RP15
(52)
RP35
(88)
RP55
(142)
RP75
(174)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download    
Gzipped Download   Download   Download   Download   Download   Download   Download    

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: pdb_2cay
Previous IDs: none
Type: Family
Author: Pollington J
Number in seed: 22
Number in full: 246
Average length of the domain: 86.50 aa
Average identity of full alignment: 33 %
Average coverage of the sequence by the domain: 17.27 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 23193494 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 24.1 24.1
Trusted cut-off 24.1 24.1
Noise cut-off 24.0 24.0
Model length: 89
Family (HMM) version: 3
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Show

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Interactions

There are 2 interactions for this family. More...

ubiquitin Vps36_ESCRT-II

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the Vps36_ESCRT-II domain has been found. There are 4 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...