Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
15  structures 37  species 1  interaction 95  sequences 39  architectures

Family: Peptidase_C80 (PF11713)

Summary: Peptidase C80 family

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

The Pfam group coordinates the annotation of Pfam families in Wikipedia, but we have not yet assigned a Wikipedia article to this family. If you think that a particular Wikipedia article provides good annotation, please let us know.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Peptidase C80 family Provide feedback

This family belongs to cysteine peptidase family C80.

Literature references

  1. Lupardus PJ, Shen A, Bogyo M, Garcia KC; , Science. 2008;322:265-268.: Small molecule-induced allosteric activation of the Vibrio cholerae RTX cysteine protease domain. PUBMED:18845756 EPMC:18845756


External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR020974

Large bacterial protein toxins autotranslocate functional effector domains to the eukaryotic cell cytosol, resulting in alterations to cellular functions that ultimately benefit the infecting pathogen. Among these toxins, the clostridial glucosylating toxins (CGTs) produced by Gram-positive bacteria and the multifunctional-autoprocessing RTX (MARTX) toxins of Gram-negative bacteria have distinct mechanisms of post-translocation, but a shared mechanism of post-translocation autoprocessing that releases these functional domains from the large holotoxins. These toxins carry an embedded cysteine protease domain (CPD) that is regulated by a unique allosteric activation mechanism. Binding of the eukaryotic-specific small molecule inositol hexakisphosphate (InsP(6)) to a basic cleft within the CPD induces a structural rearrangement that exposes the protease active site to its substrates. Proteins containing this domain belong to the peptidase family C80 of clan CD [PUBMED:20628577, PUBMED:17464284, PUBMED:18845756, PUBMED:19465933].

The CGT/MARTX CPD domain consists of a central beta-sheet that is surrounded by alpha-helices. Additional beta-strands at the C terminus form a subdomain known as the beta-flap, that is loosely attached to the core protease. The CGT/MARTX CPD catalytic dyad is composed of one His and one Cys residue. The distance between the catalytic residues indicates that the Cys is not activated by protonation from His, but rather suggests that the Cys is substrate-activated by close alignment of the scissile bond, while the His functions solely to protonate the leaving group [PUBMED:20628577, PUBMED:18845756, PUBMED:19465933].

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan Peptidase_CD (CL0093), which has the following description:

The members of this clan are all endopeptidase that have the catalytic dyad histidine followed by cysteine. The catalytic histidine is preceded by a block of hydrophobic residues and a glycine, where as the cysteine is preceded by a block of hydrophobic residues and a glutamine and an alanine. The members with a know structure adopt an alpha/beta fold [1].

The clan contains the following 8 members:

CHAT Peptidase_C11 Peptidase_C13 Peptidase_C14 Peptidase_C25 Peptidase_C50 Peptidase_C80 Raptor_N

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the UniProtKB sequence database, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(13)
Full
(95)
Representative proteomes UniProt
(501)
NCBI
(1971)
Meta
(6)
RP15
(10)
RP35
(45)
RP55
(104)
RP75
(182)
Jalview View  View  View  View  View  View  View  View  View 
HTML View  View               
PP/heatmap 1 View               

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(13)
Full
(95)
Representative proteomes UniProt
(501)
NCBI
(1971)
Meta
(6)
RP15
(10)
RP35
(45)
RP55
(104)
RP75
(182)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(13)
Full
(95)
Representative proteomes UniProt
(501)
NCBI
(1971)
Meta
(6)
RP15
(10)
RP35
(45)
RP55
(104)
RP75
(182)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Rawlings ND
Previous IDs: none
Type: Domain
Author: Rawlings ND, Bateman A
Number in seed: 13
Number in full: 95
Average length of the domain: 152.70 aa
Average identity of full alignment: 29 %
Average coverage of the sequence by the domain: 7.60 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 26740544 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 21.1 21.1
Trusted cut-off 21.4 23.2
Noise cut-off 20.2 21.0
Model length: 154
Family (HMM) version: 7
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Hide

Weight segments by...


Change the size of the sunburst

Small
Large

Colour assignments

Archea Archea Eukaryota Eukaryota
Bacteria Bacteria Other sequences Other sequences
Viruses Viruses Unclassified Unclassified
Viroids Viroids Unclassified sequence Unclassified sequence

Selections

Align selected sequences to HMM

Generate a FASTA-format file

Clear selection

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Interactions

There is 1 interaction for this family. More...

Peptidase_C80

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the Peptidase_C80 domain has been found. There are 15 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein sequence.

Loading structure mapping...