Summary: Chromosome passenger complex (CPC) protein INCENP N terminal
Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.
This is the Wikipedia entry entitled "INCENP". More...
INCENP Edit Wikipedia article
Chromosome passenger complex (CPC) protein INCENP N terminal | |||||||||
---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||
Symbol | INCENP_N | ||||||||
Pfam | PF12178 | ||||||||
InterPro | IPR022006 | ||||||||
|
Inner centromere protein, ARK binding region | |||||||||
---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||
Symbol | INCENP_ARK-bind | ||||||||
Pfam | PF03941 | ||||||||
InterPro | IPR005635 | ||||||||
|
Inner centromere protein is a protein that in humans is encoded by the INCENP gene.[5][6][7]
In mammalian cells, two broad groups of centromere-interacting proteins have been described: constitutively binding centromere proteins and 'passenger' (or transiently interacting) proteins.[8] The constitutive proteins include CENPA (centromere protein A), CENPB, CENPC1, and CENPD.
The term 'passenger proteins' encompasses a broad collection of proteins that localize to the centromere during specific stages of the cell cycle.[9] These include CENPE; MCAK; KID; cytoplasmic dynein (e.g., DYNC1H1); CliPs (e.g. CLIP1); and CENPF/mitosin (CENPF). The inner centromere proteins (INCENPs),[5] the initial members of the passenger protein group, display a broad localization along chromosomes in the early stages of mitosis but gradually become concentrated at centromeres as the cell cycle progresses into mid-metaphase. During telophase, the proteins are located within the midbody in the intercellular bridge, where they are discarded after cytokinesis.[7][10]
INCENP is a regulatory protein in the chromosome passenger complex. It is involved in regulation of the catalytic protein Aurora B. It performs this function in association with two other proteins - Survivin and Borealin. These proteins form a tight three-helical bundle. The N-terminal domain of INCENP is the domain involved in formation of this three-helical bundle.[11]
Interactions
INCENP has been shown to interact with H2AFZ,[12] Survivin[13] and CDCA8.[14] The ARK binding region has been found to be necessary and sufficient for binding to aurora-related kinase. This interaction has been implicated in the coordination of chromosome segregation with cell division in yeast.[15]
References
- ^ a b c GRCh38: Ensembl release 89: ENSG00000149503 - Ensembl, May 2017
- ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000024660 - Ensembl, May 2017
- ^ "Human PubMed Reference:".
- ^ "Mouse PubMed Reference:".
- ^ a b Earnshaw WC, Cooke CA (Sep 1991). "Analysis of the distribution of the INCENPs throughout mitosis reveals the existence of a pathway of structural changes in the chromosomes during metaphase and early events in cleavage furrow formation". J Cell Sci. 98 (4): 443–61. PMID 1860899.
- ^ Adams RR, Eckley DM, Vagnarelli P, Wheatley SP, Gerloff DL, Mackay AM, Svingen PA, Kaufmann SH, Earnshaw WC (Jul 2001). "Human INCENP colocalizes with the Aurora-B/AIRK2 kinase on chromosomes and is overexpressed in tumour cells". Chromosoma. 110 (2): 65–74. doi:10.1007/s004120100130. PMID 11453556.
- ^ a b "Entrez Gene: INCENP inner centromere protein antigens 135/155kDa".
- ^ Choo, K. H. Andy (1997). The centromere. Oxford [Oxfordshire]: Oxford University Press. ISBN 0-19-857780-X.
- ^ Earnshaw WC, Mackay AM (September 1994). "Role of nonhistone proteins in the chromosomal events of mitosis". FASEB J. 8 (12): 947–56. PMID 8088460.
- ^ Cutts SM, Fowler KJ, Kile BT, Hii LL, O'Dowd RA, Hudson DF, Saffery R, Kalitsis P, Earle E, Choo KH (July 1999). "Defective chromosome segregation, microtubule bundling and nuclear bridging in inner centromere protein gene (Incenp)-disrupted mice". Hum. Mol. Genet. 8 (7): 1145–55. doi:10.1093/hmg/8.7.1145. PMID 10369859.
- ^ Jeyaprakash, A. A.; Klein, U. R.; Lindner, D.; Ebert, J.; Nigg, E. A.; Conti, E. (2007). "Structure of a Survivin–Borealin–INCENP Core Complex Reveals How Chromosomal Passengers Travel Together". Cell. 131 (2): 271–285. doi:10.1016/j.cell.2007.07.045. PMID 17956729.
- ^ Rangasamy D, Berven L, Ridgway P, Tremethick DJ (April 2003). "Pericentric heterochromatin becomes enriched with H2A.Z during early mammalian development". EMBO J. 22 (7): 1599–607. doi:10.1093/emboj/cdg160. PMC 152904
. PMID 12660166.
- ^ Wheatley SP, Carvalho A, Vagnarelli P, Earnshaw WC (June 2001). "INCENP is required for proper targeting of Survivin to the centromeres and the anaphase spindle during mitosis". Curr. Biol. 11 (11): 886–90. doi:10.1016/S0960-9822(01)00238-X. PMID 11516652.
- ^ Gassmann R, Carvalho A, Henzing AJ, Ruchaud S, Hudson DF, Honda R, Nigg EA, Gerloff DL, Earnshaw WC (July 2004). "Borealin: a novel chromosomal passenger required for stability of the bipolar mitotic spindle". J. Cell Biol. 166 (2): 179–91. doi:10.1083/jcb.200404001. PMC 2172304
. PMID 15249581.
- ^ Leverson JD, Huang HK, Forsburg SL, Hunter T (April 2002). "The Schizosaccharomyces pombe aurora-related kinase Ark1 interacts with the inner centromere protein Pic1 and mediates chromosome segregation and cytokinesis". Mol. Biol. Cell. 13 (4): 1132–43. doi:10.1091/mbc.01-07-0330. PMC 102257
. PMID 11950927.
Further reading
- Ainsztein AM, Kandels-Lewis SE, Mackay AM, Earnshaw WC (1999). "INCENP centromere and spindle targeting: identification of essential conserved motifs and involvement of heterochromatin protein HP1". J. Cell Biol. 143 (7): 1763–74. doi:10.1083/jcb.143.7.1763. PMC 2175214
. PMID 9864353.
- Martineau-Thuillier S, Andreassen PR, Margolis RL (1999). "Colocalization of TD-60 and INCENP throughout G2 and mitosis: evidence for their possible interaction in signalling cytokinesis". Chromosoma. 107 (6-7): 461–70. doi:10.1007/s004120050330. PMID 9914378.
- Dias Neto E, Correa RG, Verjovski-Almeida S, et al. (2000). "Shotgun sequencing of the human transcriptome with ORF expressed sequence tags". Proc. Natl. Acad. Sci. U.S.A. 97 (7): 3491–6. doi:10.1073/pnas.97.7.3491. PMC 16267
. PMID 10737800.
- Wheatley SP, Kandels-Lewis SE, Adams RR, et al. (2001). "INCENP binds directly to tubulin and requires dynamic microtubules to target to the cleavage furrow". Exp. Cell Res. 262 (2): 122–7. doi:10.1006/excr.2000.5088. PMID 11139336.
- Wheatley SP, Carvalho A, Vagnarelli P, Earnshaw WC (2001). "INCENP is required for proper targeting of Survivin to the centromeres and the anaphase spindle during mitosis". Curr. Biol. 11 (11): 886–90. doi:10.1016/S0960-9822(01)00238-X. PMID 11516652.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMC 139241
. PMID 12477932.
- Parra MT, Viera A, Gómez R, et al. (2003). "Dynamic relocalization of the chromosomal passenger complex proteins inner centromere protein (INCENP) and aurora-B kinase during male mouse meiosis". J. Cell Sci. 116 (Pt 6): 961–74. doi:10.1242/jcs.00330. PMID 12584241.
- Rangasamy D, Berven L, Ridgway P, Tremethick DJ (2003). "Pericentric heterochromatin becomes enriched with H2A.Z during early mammalian development". EMBO J. 22 (7): 1599–607. doi:10.1093/emboj/cdg160. PMC 152904
. PMID 12660166.
- Honda R, Körner R, Nigg EA (2004). "Exploring the functional interactions between Aurora B, INCENP, and survivin in mitosis". Mol. Biol. Cell. 14 (8): 3325–41. doi:10.1091/mbc.E02-11-0769. PMC 181570
. PMID 12925766.
- Wheatley SP, Henzing AJ, Dodson H, et al. (2004). "Aurora-B phosphorylation in vitro identifies a residue of survivin that is essential for its localization and binding to inner centromere protein (INCENP) in vivo". J. Biol. Chem. 279 (7): 5655–60. doi:10.1074/jbc.M311299200. PMID 14610074.
- Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs". Nat. Genet. 36 (1): 40–5. doi:10.1038/ng1285. PMID 14702039.
- Gassmann R, Carvalho A, Henzing AJ, et al. (2004). "Borealin: a novel chromosomal passenger required for stability of the bipolar mitotic spindle". J. Cell Biol. 166 (2): 179–91. doi:10.1083/jcb.200404001. PMC 2172304
. PMID 15249581.
- Li X, Sakashita G, Matsuzaki H, et al. (2004). "Direct association with inner centromere protein (INCENP) activates the novel chromosomal passenger protein, Aurora-C". J. Biol. Chem. 279 (45): 47201–11. doi:10.1074/jbc.M403029200. PMID 15316025.
- Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)". Genome Res. 14 (10B): 2121–7. doi:10.1101/gr.2596504. PMC 528928
. PMID 15489334.
- Zhu C, Bossy-Wetzel E, Jiang W (2005). "Recruitment of MKLP1 to the spindle midzone/midbody by INCENP is essential for midbody formation and completion of cytokinesis in human cells". Biochem. J. 389 (Pt 2): 373–81. doi:10.1042/BJ20050097. PMC 1175114
. PMID 15796717.
- Chen HL, Tang CJ, Chen CY, Tang TK (2005). "Overexpression of an Aurora-C kinase-deficient mutant disrupts the Aurora-B/INCENP complex and induces polyploidy". J. Biomed. Sci. 12 (2): 297–310. doi:10.1007/s11373-005-0980-0. PMID 15917996.
- Vader G, Kauw JJ, Medema RH, Lens SM (2006). "Survivin mediates targeting of the chromosomal passenger complex to the centromere and midbody". EMBO Rep. 7 (1): 85–92. doi:10.1038/sj.embor.7400562. PMC 1369225
. PMID 16239925.
- Goto H, Kiyono T, Tomono Y, et al. (2006). "Complex formation of Plk1 and INCENP required for metaphase-anaphase transition". Nat. Cell Biol. 8 (2): 180–7. doi:10.1038/ncb1350. PMID 16378098.
This article incorporates text from the public domain Pfam and InterPro IPR005635
This article incorporates text from the public domain Pfam and InterPro IPR022006
This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.
This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.
Chromosome passenger complex (CPC) protein INCENP N terminal Provide feedback
This domain family is found in eukaryotes, and is approximately 40 amino acids in length. INCENP is a regulatory protein in the chromosome passenger complex. It is involved in regulation of the catalytic protein Aurora B. It performs this function in association with two other proteins - Survivin and Borealin. These proteins form a tight three-helical bundle. The N terminal domain is the domain involved in formation of this three helical bundle.
Literature references
-
Jeyaprakash AA, Klein UR, Lindner D, Ebert J, Nigg EA, Conti E;, Cell. 2007;131:271-285.: Structure of a Survivin-Borealin-INCENP core complex reveals how chromosomal passengers travel together. PUBMED:17956729 EPMC:17956729
This tab holds annotation information from the InterPro database.
InterPro entry IPR022006
This domain family is found in eukaryotes, and is approximately 40 amino acids in length. INCENP is a regulatory protein in the chromosome passenger complex. It is involved in regulation of the catalytic protein Aurora B. It performs this function in association with two other proteins - Survivin and Borealin. These proteins form a tight three-helical bundle. The N-terminal domain is the domain involved in formation of this three helical bundle.
Domain organisation
Below is a listing of the unique domain organisations or architectures in which this domain is found. More...
Loading domain graphics...
Alignments
We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the UniProtKB sequence database, the NCBI sequence database, and our metagenomics sequence database. More...
View options
We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.
Seed (14) |
Full (123) |
Representative proteomes | UniProt (200) |
NCBI (603) |
Meta (0) |
||||
---|---|---|---|---|---|---|---|---|---|
RP15 (12) |
RP35 (40) |
RP55 (76) |
RP75 (92) |
||||||
Jalview | |||||||||
HTML | |||||||||
PP/heatmap | 1 |
1Cannot generate PP/Heatmap alignments for seeds; no PP data available
Key:
available,
not generated,
— not available.
Format an alignment
Download options
We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.
Seed (14) |
Full (123) |
Representative proteomes | UniProt (200) |
NCBI (603) |
Meta (0) |
||||
---|---|---|---|---|---|---|---|---|---|
RP15 (12) |
RP35 (40) |
RP55 (76) |
RP75 (92) |
||||||
Raw Stockholm | |||||||||
Gzipped |
You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.
HMM logo
HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...
Trees
This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.
Note: You can also download the data file for the tree.
Curation and family details
This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.
Curation
Seed source: | pdb_2qfa |
Previous IDs: | none |
Type: | Domain |
Sequence Ontology: | SO:0000417 |
Author: |
Mistry J |
Number in seed: | 14 |
Number in full: | 123 |
Average length of the domain: | 35.50 aa |
Average identity of full alignment: | 55 % |
Average coverage of the sequence by the domain: | 4.25 % |
HMM information
HMM build commands: |
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 45638612 -E 1000 --cpu 4 HMM pfamseq
|
||||||||||||
Model details: |
|
||||||||||||
Model length: | 36 | ||||||||||||
Family (HMM) version: | 8 | ||||||||||||
Download: | download the raw HMM for this family |
Species distribution
Sunburst controls
HideWeight segments by...
Change the size of the sunburst
Colour assignments
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Selections
Align selected sequences to HMM
Generate a FASTA-format file
Clear selection
This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...
Tree controls
HideThe tree shows the occurrence of this domain across different species. More...
Loading...
Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.
Interactions
There is 1 interaction for this family. More...
Nbl1_Borealin_NStructures
For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the INCENP_N domain has been found. There are 1 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein sequence.
Loading structure mapping...