Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
0  structures 842  species 0  interactions 1464  sequences 64  architectures

Family: P5-ATPase (PF12409)

Summary: P5-type ATPase cation transporter

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

The Pfam group coordinates the annotation of Pfam families in Wikipedia, but we have not yet assigned a Wikipedia article to this family. If you think that a particular Wikipedia article provides good annotation, please let us know.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

P5-type ATPase cation transporter Provide feedback

This domain family is found in eukaryotes, and is typically between 110 and 126 amino acids in length. The family is found in association with PF00122 PF00702. P-type ATPases comprise a large superfamily of proteins, present in both prokaryotes and eukaryotes, that transport inorganic cations and other substrates across cell membranes.

Literature references

  1. Schultheis PJ, Hagen TT, O'Toole KK, Tachibana A, Burke CR, McGill DL, Okunade GW, Shull GE;, Biochem Biophys Res Commun. 2004;323:731-738.: Characterization of the P5 subfamily of P-type transport ATPases in mice. PUBMED:15381061 EPMC:15381061


This tab holds annotation information from the InterPro database.

InterPro entry IPR006544

Transmembrane ATPases are membrane-bound enzyme complexes/ion transporters that use ATP hydrolysis to drive the transport of protons across a membrane. Some transmembrane ATPases also work in reverse, harnessing the energy from a proton gradient, using the flux of ions across the membrane via the ATPase proton channel to drive the synthesis of ATP.

There are several different types of transmembrane ATPases, which can differ in function (ATP hydrolysis and/or synthesis), structure (e.g., F-, V- and A-ATPases, which contain rotary motors) and in the type of ions they transport [PUBMED:15473999, PUBMED:15078220]. The different types include:

  • F-ATPases (ATP synthases, F1F0-ATPases), which are found in mitochondria, chloroplasts and bacterial plasma membranes where they are the prime producers of ATP, using the proton gradient generated by oxidative phosphorylation (mitochondria) or photosynthesis (chloroplasts).
  • V-ATPases (V1V0-ATPases), which are primarily found in eukaryotes and they function as proton pumps that acidify intracellular compartments and, in some cases, transport protons across the plasma membrane [PUBMED:20450191]. They are also found in bacteria [PUBMED:9741106].
  • A-ATPases (A1A0-ATPases), which are found in Archaea and function like F-ATPases, though with respect to their structure and some inhibitor responses, A-ATPases are more closely related to the V-ATPases [PUBMED:18937357, PUBMED:1385979].
  • P-ATPases (E1E2-ATPases), which are found in bacteria and in eukaryotic plasma membranes and organelles, and function to transport a variety of different ions across membranes.
  • E-ATPases, which are cell-surface enzymes that hydrolyse a range of NTPs, including extracellular ATP.

P-ATPases (also known as E1-E2 ATPases) (EC) are found in bacteria and in a number of eukaryotic plasma membranes and organelles [PUBMED:9419228]. P-ATPases function to transport a variety of different compounds, including ions and phospholipids, across a membrane using ATP hydrolysis for energy. There are many different classes of P-ATPases, which transport specific types of ion: H+, Na+, K+, Mg2+, Ca2+, Ag+ and Ag2+, Zn2+, Co2+, Pb2+, Ni2+, Cd2+, Cu+ and Cu2+. P-ATPases can be composed of one or two polypeptides, and can usually assume two main conformations called E1 and E2.

These P-type ATPases form a distinct clade but the substrate of their pumping activity has yet to be determined. This clade has been designated subfamily V [PUBMED:9419228].

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the UniProtKB sequence database, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(151)
Full
(1464)
Representative proteomes UniProt
(2176)
NCBI
(3651)
Meta
(0)
RP15
(390)
RP35
(709)
RP55
(1065)
RP75
(1300)
Jalview View  View  View  View  View  View  View  View   
HTML View  View               
PP/heatmap 1 View               

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(151)
Full
(1464)
Representative proteomes UniProt
(2176)
NCBI
(3651)
Meta
(0)
RP15
(390)
RP35
(709)
RP55
(1065)
RP75
(1300)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(151)
Full
(1464)
Representative proteomes UniProt
(2176)
NCBI
(3651)
Meta
(0)
RP15
(390)
RP35
(709)
RP55
(1065)
RP75
(1300)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download    
Gzipped Download   Download   Download   Download   Download   Download   Download   Download    

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Prosite
Previous IDs: P_ATPase;
Type: Family
Sequence Ontology: SO:0100021
Author: Gavin OL
Number in seed: 151
Number in full: 1464
Average length of the domain: 123.30 aa
Average identity of full alignment: 22 %
Average coverage of the sequence by the domain: 10.24 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 45638612 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 22.7 22.7
Trusted cut-off 23.0 22.8
Noise cut-off 22.6 22.3
Model length: 125
Family (HMM) version: 8
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Hide

Weight segments by...


Change the size of the sunburst

Small
Large

Colour assignments

Archea Archea Eukaryota Eukaryota
Bacteria Bacteria Other sequences Other sequences
Viruses Viruses Unclassified Unclassified
Viroids Viroids Unclassified sequence Unclassified sequence

Selections

Align selected sequences to HMM

Generate a FASTA-format file

Clear selection

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.