Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
4  structures 88  species 0  interactions 90  sequences 2  architectures

Family: Ten1 (PF12658)

Summary: Telomere capping, CST complex subunit

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

The Pfam group coordinates the annotation of Pfam families in Wikipedia, but we have not yet assigned a Wikipedia article to this family. If you think that a particular Wikipedia article provides good annotation, please let us know.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Telomere capping, CST complex subunit Provide feedback

Stn1 and Ten1 are DNA-binding proteins with specificity for telomeric DNA substrates and both protect chromosome termini from unregulated resection and regulate telomere length. Stn1 complexes with Ten1 and Cdc13 to function as a telomere-specific replication protein A (RPA)-like complex [1]. These three interacting proteins associate with the telomeric overhang in budding yeast, whereas a single protein known as Pot1 (protection of telomeres-1) performs this function in fission yeast, and a two-subunit complex consisting of POT1 and TPP1 associates with telomeric ssDNA in humans. S.pombe has Stn1- and Ten1-like proteins that are essential for chromosome end protection. Stn1 orthologues exist in all species that have Pot1, whereas Ten1-like proteins can be found in all fungi. Fission yeast Stn1 and Ten1 localise at telomeres in a manner that correlates with the length of the ssDNA overhang, suggesting that they specifically associate with the telomeric ssDNA. Two separate protein complexes are required for chromosome end protection in fission yeast. Protection of telomeres by multiple proteins with OB-fold domains is conserved in eukaryotic evolution [2]. Ten1 is one of the three components of the CST complex, which, in conjunction with the Shelterin complex helps protect telomeres from attack by DNA-repair mechanisms [4].

Literature references

  1. Gao H, Cervantes RB, Mandell EK, Otero JH, Lundblad V; , Nat Struct Mol Biol. 2007;14:208-214.: RPA-like proteins mediate yeast telomere function. PUBMED:17293872 EPMC:17293872

  2. Martin V, Du LL, Rozenzhak S, Russell P; , Proc Natl Acad Sci U S A. 2007;104:14038-14043.: Protection of telomeres by a conserved Stn1-Ten1 complex. PUBMED:17715303 EPMC:17715303

  3. Gelinas AD, Paschini M, Reyes FE, Heroux A, Batey RT, Lundblad V, Wuttke DS;, Proc Natl Acad Sci U S A. 2009; [Epub ahead of print]: Telomere capping proteins are structurally related to RPA with an additional telomere-specific domain. PUBMED:19884503 EPMC:19884503

  4. Wellinger RJ;, Mol Cell. 2009;36:168-169.: The CST complex and telomere maintenance: the exception becomes the rule. PUBMED:19854124 EPMC:19854124


External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR024222

Stn1 and Ten1 are DNA-binding proteins with specificity for telomeric DNA substrates and both protect chromosome termini from unregulated resection and regulate telomere length. Stn1 complexes with Ten1 and Cdc13 to function as a telomere-specific replication protein A (RPA)-like complex [PUBMED:17293872]. These three interacting proteins associate with the telomeric overhang in budding yeast, whereas a single protein known as Pot1 (protection of telomeres-1) performs this function in fission yeast, and a two-subunit complex consisting of POT1 and TPP1 associates with telomeric ssDNA in humans. S.pombe has Stn1- and Ten1-like proteins that are essential for chromosome end protection. Stn1 orthologues exist in all species that have Pot1, whereas Ten1-like proteins can be found in all fungi. Fission yeast Stn1 and Ten1 localise at telomeres in a manner that correlates with the length of the ssDNA overhang, suggesting that they specifically associate with the telomeric ssDNA. Two separate protein complexes are required for chromosome end protection in fission yeast. Protection of telomeres by multiple proteins with OB-fold domains is conserved in eukaryotic evolution [PUBMED:17715303].

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan OB (CL0021), which has the following description:

The OB (oligonucleotide/oligosaccharide binding) was defined by Murzin [1]. The common part of the OB-fold, has a five-stranded beta-sheet coiled to form a closed beta-barrel. This barrel is capped by an alpha-helix located between the third and fourth strands [1].

The clan contains the following 45 members:

BOF CSD DNA_ligase_OB DUF2110 DUF223 DUF3127 DUF35 EFP eIF-1a eIF-5a EutN_CcmL EXOSC1 mRNA_cap_C OB_NTP_bind OB_RNB OmdA Phage_DNA_bind POT1 RecO_N RecO_N_2 Rep-A_N Rep_fac-A_3 Rho_RNA_bind Ribosom_S12_S23 Ribosomal_L2 Ribosomal_S17 RNA_pol_Rbc25 RNA_pol_Rpb8 RuvA_N S1 S1-like S1_2 SSB Stn1 TEBP_beta Ten1 Ten1_2 TOBE TOBE_2 TOBE_3 TRAM tRNA_anti-codon tRNA_anti-like tRNA_anti_2 tRNA_bind

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(27)
Full
(90)
Representative proteomes NCBI
(79)
Meta
(0)
RP15
(9)
RP35
(30)
RP55
(49)
RP75
(62)
Jalview View  View  View  View  View  View  View   
HTML View  View  View  View  View  View     
PP/heatmap 1 View  View  View  View  View     
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(27)
Full
(90)
Representative proteomes NCBI
(79)
Meta
(0)
RP15
(9)
RP35
(30)
RP55
(49)
RP75
(62)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(27)
Full
(90)
Representative proteomes NCBI
(79)
Meta
(0)
RP15
(9)
RP35
(30)
RP55
(49)
RP75
(62)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download    
Gzipped Download   Download   Download   Download   Download   Download   Download    

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Wood V
Previous IDs: none
Type: Domain
Author: Coggill P
Number in seed: 27
Number in full: 90
Average length of the domain: 132.90 aa
Average identity of full alignment: 26 %
Average coverage of the sequence by the domain: 80.45 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 23193494 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 21.6 21.6
Trusted cut-off 21.7 21.6
Noise cut-off 21.5 21.1
Model length: 124
Family (HMM) version: 2
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Show

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the Ten1 domain has been found. There are 4 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...