Summary: Meiotic cell cortex C-terminal pleckstrin homology
Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.
The Pfam group coordinates the annotation of Pfam families in Wikipedia, but we have not yet assigned a Wikipedia article to this family. If you think that a particular Wikipedia article provides good annotation, please let us know.
This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.
Meiotic cell cortex C-terminal pleckstrin homology Provide feedback
The PH domain of these largely fungal proteins is necessary for the cortical localisation of the protein during meiosis, since the overall function of the protein is to anchor dynein at the cell cortex during the horsetail phase. During prophase I of fission yeast, horsetail nuclear movement occurs, and this starts when all the telomeres become bundled at the spindle pole body - SPB. Subsequent to this, the nucleus undergoes a dynamic oscillation, resulting in elongated nuclear morphology. Horsetail nuclear movement is thought to be predominantly due to the pulling of astral microtubules that link the SPB to cortical microtubule-attachment sites at the opposite end of the cell; the pulling force is believed to be provided by cytoplasmic dynein and dynactin.
Literature references
-
Saito TT, Okuzaki D, Nojima H;, J Cell Biol. 2006;173:27-33.mcp5 C terminal domain: Mcp5, a meiotic cell cortex protein, is required for nuclear movement mediated by dynein and microtubules in fission yeast. PUBMED:16585273 EPMC:16585273
Internal database links
SCOOP: | PH PH_8 |
Similarity to PfamA using HHSearch: | PH PH_12 |
This tab holds annotation information from the InterPro database.
InterPro entry IPR024774
This pleckstrin homology domain is found in eukaryotic proteins, including Mcp5, a fungal protein that anchors dynein at the cell cortex during the horsetail phase (prophase I) of meiosis. During prophase I of fission yeast all the telomeres become bundled at the spindle pole body and subsequently the nucleus undergoes a dynamic oscillation, resulting in elongated nuclear morphology known as "horsetail" nucleus. The pleckstrin homology domain is necessary for the cortical localisation of the Mcp5 protein during meiosis [PUBMED:16585273].
Gene Ontology
The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.
Cellular component | cell cortex (GO:0005938) |
Molecular function | protein binding (GO:0005515) |
phospholipid binding (GO:0005543) | |
Biological process | cortical protein anchoring (GO:0032065) |
Domain organisation
Below is a listing of the unique domain organisations or architectures in which this domain is found. More...
Loading domain graphics...
Pfam Clan
This family is a member of clan PH (CL0266), which has the following description:
Members of this clan share a PH-like fold. Many families in this clan bind to short peptide motifs in proteins and are involved in signalling.
The clan contains the following 73 members:
ASK_PH BBL5 bPH_1 bPH_2 bPH_3 bPH_4 bPH_5 bPH_6 CARM1 Carm_PH DCP1 DUF1126 DUF1681 DUF3203 EbsA FERM_C Glycoprot_B_PH1 Glycoprot_B_PH2 GRAM hSac2 ICAP-1_inte_bdg INPP5B_PH IQ_SEC7_PH IRS ISP1_C ISP3_C Jak1_Phl Mcp5_PH Myosin_TH1 OCRL_clath_bd PH PH_10 PH_11 PH_12 PH_13 PH_14 PH_15 PH_16 PH_17 PH_18 PH_19 PH_2 PH_3 PH_4 PH_5 PH_6 PH_8 PH_9 PH_BEACH PH_RBD PH_TFIIH PID PID_2 POB3_N Proteasom_Rpn13 PTB Ran_BP1 Rtt106 SCAB-PH Sec3-PIP2_bind Sharpin_PH SIN1_PH SNX17_FERM_C SPT16 SSrecog SYCP2_SLD UCH_N VID27_PH Voldacs Vps36_ESCRT-II WH1 YcxB ZFYVE21_CAlignments
We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the UniProtKB sequence database, the NCBI sequence database, and our metagenomics sequence database. More...
View options
We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.
Seed (19) |
Full (1116) |
Representative proteomes | UniProt (1921) |
NCBI (2847) |
Meta (0) |
||||
---|---|---|---|---|---|---|---|---|---|
RP15 (162) |
RP35 (475) |
RP55 (748) |
RP75 (1123) |
||||||
Jalview | |||||||||
HTML | |||||||||
PP/heatmap | 1 |
1Cannot generate PP/Heatmap alignments for seeds; no PP data available
Key:
available,
not generated,
— not available.
Format an alignment
Download options
We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.
Seed (19) |
Full (1116) |
Representative proteomes | UniProt (1921) |
NCBI (2847) |
Meta (0) |
||||
---|---|---|---|---|---|---|---|---|---|
RP15 (162) |
RP35 (475) |
RP55 (748) |
RP75 (1123) |
||||||
Raw Stockholm | |||||||||
Gzipped |
You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.
HMM logo
HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...
Trees
This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.
Note: You can also download the data file for the tree.
Curation and family details
This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.
Curation
Seed source: | Pfam-B_1220 (release 24.0) |
Previous IDs: | none |
Type: | Domain |
Sequence Ontology: | SO:0000417 |
Author: |
Wood V |
Number in seed: | 19 |
Number in full: | 1116 |
Average length of the domain: | 124.00 aa |
Average identity of full alignment: | 46 % |
Average coverage of the sequence by the domain: | 8.19 % |
HMM information
HMM build commands: |
build method: hmmbuild --amino -o /dev/null HMM SEED
search method: hmmsearch -Z 47079205 -E 1000 --cpu 4 HMM pfamseq
|
||||||||||||
Model details: |
|
||||||||||||
Model length: | 119 | ||||||||||||
Family (HMM) version: | 8 | ||||||||||||
Download: | download the raw HMM for this family |
Species distribution
Sunburst controls
HideWeight segments by...
Change the size of the sunburst
Colour assignments
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Selections
Align selected sequences to HMM
Generate a FASTA-format file
Clear selection
This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...
Tree controls
HideThe tree shows the occurrence of this domain across different species. More...
Loading...
Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.