Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
17  structures 992  species 0  interactions 1294  sequences 30  architectures

Family: ATG7_N (PF16420)

Summary: Ubiquitin-like modifier-activating enzyme ATG7 N-terminus

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "ATG7". More...

ATG7 Edit Wikipedia article

ATG7
Identifiers
Aliases ATG7, APG7-LIKE, APG7L, GSA7, autophagy related 7
External IDs MGI: 1921494 HomoloGene: 4662 GeneCards: ATG7
Gene location (Human)
Chromosome 3 (human)
Chr. Chromosome 3 (human)[1]
Chromosome 3 (human)
Genomic location for ATG7
Genomic location for ATG7
Band 3p25.3 Start 11,272,309 bp[1]
End 11,557,665 bp[1]
RNA expression pattern
PBB GE ATG7 218673 s at fs.png
More reference expression data
Orthologs
Species Human Mouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001253717
NM_001253718
NM_028835

RefSeq (protein)

NP_001240646
NP_001240647
NP_083111

Location (UCSC) Chr 3: 11.27 – 11.56 Mb Chr 6: 114.64 – 114.86 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Autophagy-related protein 7 is a protein in humans encoded by ATG7 gene.[5][6] Related to GSA7; APG7L; APG7-LIKE.[6]

ATG 7, present in both plant and animal genomes, acts as an essential protein for cell degradation and its recycling.[7][8] The sequence associates with the ubiquitin- proteasome system, UPS, required for the unique development of an autophagosomal membrane and fusion within cells.[9]

ATG7 was identified based on homology to yeast cells Pichia pastoris GSA7 and Saccharomyces cerevisiae APG7. The protein appears to be required for fusion of peroxisomal and vacuolar membranes.[10][10]

Autophagy is an important cellular process that helps in maintaining homeostasis. It goes through destroying and recycling the cytoplasmic organelles and macromolecules. During the initiation of autophagy, ATG7 acts like an E-1 enzyme for ubiquitin-like proteins (UBL) such as ATG12 and ATG8. ATG7 helps these UBL proteins in targetting their molecule by binding to them and activating their transfer to an E-2 enzyme. ATG7's role in both of these autophagy-specific UBL systems makes it an essential regulator of autophagosome assembly.[11]

Homologous to the ATP-binding and catalytic sites of E1 activator proteins, ATG7 uses its cysteine residue to create a thiol-ester bond with free Ubiquitin molecules.[9][12] Through UPS, Ubiquitin will continue to bind to other autophagy-related proteins, E2 conjugation proteins and E3 protein ligases, to attach Ubiquitins to a target substrate to induce autophagy.[13]

ATG 7 is often associated with ATG12/ ATG5 sequenced ubiquitination cascade. As well in presence of p53 cell cycle pathways during stressed and nutrient poor environments.[14][14][15]

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000197548 - Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000030314 - Ensembl, May 2017
  3. ^ "Human PubMed Reference:". 
  4. ^ "Mouse PubMed Reference:". 
  5. ^ Yuan W, Stromhaug PE, Dunn WA (May 1999). "Glucose-induced autophagy of peroxisomes in Pichia pastoris requires a unique E1-like protein". Molecular Biology of the Cell. 10 (5): 1353–66. doi:10.1091/mbc.10.5.1353. PMC 25277Freely accessible. PMID 10233149. 
  6. ^ a b "Entrez Gene: ATG7 ATG7 autophagy related 7 homolog (S. cerevisiae)". 
  7. ^ Online Mendelian Inheritance in Man (OMIM) AUTOPHAGY 7, S. CEREVISIAE, HOMOLOG OF; ATG7 -608760
  8. ^ "Mechanisms for autophagy: 2016 Nobel Prize in Physiology or Medicine". ScienceDaily. Retrieved 2017-10-20. 
  9. ^ a b Lilienbaum A (March 2013). "Relationship between the proteasomal system and autophagy". International Journal of Biochemistry and Molecular Biology. 4 (1): 1–26. PMC 3627065Freely accessible. PMID 23638318. 
  10. ^ a b Yuan W, Stromhaug PE, Dunn WA (May 1999). "Glucose-induced autophagy of peroxisomes in Pichia pastoris requires a unique E1-like protein". Molecular Biology of the Cell. 10 (5): 1353–66. doi:10.1091/mbc.10.5.1353. PMC 25277Freely accessible. PMID 10233149. 
  11. ^ Xiong J (October 2015). "Atg7 in development and disease: panacea or Pandora's Box?". Protein & Cell. 6 (10): 722–34. doi:10.1007/s13238-015-0195-8. PMC 4598325Freely accessible. PMID 26404030. 
  12. ^ Lecker SH, Goldberg AL, Mitch WE (July 2006). "Protein degradation by the ubiquitin-proteasome pathway in normal and disease states". Journal of the American Society of Nephrology. 17 (7): 1807–19. doi:10.1681/ASN.2006010083. PMID 16738015. 
  13. ^ Myung J, Kim KB, Crews CM (July 2001). "The ubiquitin-proteasome pathway and proteasome inhibitors". Medicinal Research Reviews. 21 (4): 245–73. doi:10.1002/med.1009.abs. PMC 2556558Freely accessible. PMID 11410931. 
  14. ^ a b Lee IH, Kawai Y, Fergusson MM, Rovira II, Bishop AJ, Motoyama N, Cao L, Finkel T (April 2012). "Atg7 modulates p53 activity to regulate cell cycle and survival during metabolic stress". Science. 336 (6078): 225–8. doi:10.1126/science.1218395. PMC 4721513Freely accessible. PMID 22499945. 
  15. ^ Das S (February 2018). "Unraveling the CNOT: A new player in the autophagy-cell death nexus". Science Signaling. 11 (516). doi:10.1126/scisignal.aar6364. PMID 29438015. 

Further reading

  • Tanida I, Tanida-Miyake E, Komatsu M, Ueno T, Kominami E (April 2002). "Human Apg3p/Aut1p homologue is an authentic E2 enzyme for multiple substrates, GATE-16, GABARAP, and MAP-LC3, and facilitates the conjugation of hApg12p to hApg5p". The Journal of Biological Chemistry. 277 (16): 13739–44. doi:10.1074/jbc.M200385200. PMID 11825910. 
  • Tanida I, Tanida-Miyake E, Nishitani T, Komatsu M, Yamazaki H, Ueno T, Kominami E (March 2002). "Murine Apg12p has a substrate preference for murine Apg7p over three Apg8p homologs". Biochemical and Biophysical Research Communications. 292 (1): 256–62. doi:10.1006/bbrc.2002.6645. PMID 11890701. 
  • Mizushima N, Yoshimori T, Ohsumi Y (December 2002). "Mouse Apg10 as an Apg12-conjugating enzyme: analysis by the conjugation-mediated yeast two-hybrid method". FEBS Letters. 532 (3): 450–4. doi:10.1016/S0014-5793(02)03739-0. PMID 12482611. 
  • Nemoto T, Tanida I, Tanida-Miyake E, Minematsu-Ikeguchi N, Yokota M, Ohsumi M, Ueno T, Kominami E (October 2003). "The mouse APG10 homologue, an E2-like enzyme for Apg12p conjugation, facilitates MAP-LC3 modification". The Journal of Biological Chemistry. 278 (41): 39517–26. doi:10.1074/jbc.m300550200. PMID 12890687. 
  • Otsuki T, Ota T, Nishikawa T, Hayashi K, Suzuki Y, Yamamoto J, Wakamatsu A, Kimura K, Sakamoto K, Hatano N, Kawai Y, Ishii S, Saito K, Kojima S, Sugiyama T, Ono T, Okano K, Yoshikawa Y, Aotsuka S, Sasaki N, Hattori A, Okumura K, Nagai K, Sugano S, Isogai T (2007). "Signal sequence and keyword trap in silico for selection of full-length human cDNAs encoding secretion or membrane proteins from oligo-capped cDNA libraries". DNA Research. 12 (2): 117–26. doi:10.1093/dnares/12.2.117. PMID 16303743. 
  • Tanida I, Sou YS, Minematsu-Ikeguchi N, Ueno T, Kominami E (June 2006). "Atg8L/Apg8L is the fourth mammalian modifier of mammalian Atg8 conjugation mediated by human Atg4B, Atg7 and Atg3". The FEBS Journal. 273 (11): 2553–62. doi:10.1111/j.1742-4658.2006.05260.x. PMID 16704426. 

External links


This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Ubiquitin-like modifier-activating enzyme ATG7 N-terminus Provide feedback

This is the N-terminal domain of Ubiquitin-like modifier-activating enzyme ATG7. In Arabidopsis this domain binds the E2 enzymes ATG10 and ATG3 [1].

Literature references

  1. Yamaguchi M, Matoba K, Sawada R, Fujioka Y, Nakatogawa H, Yamamoto H, Kobashigawa Y, Hoshida H, Akada R, Ohsumi Y, Noda NN, Inagaki F;, Nat Struct Mol Biol. 2012;19:1250-1256.: Noncanonical recognition and UBL loading of distinct E2s by autophagy-essential Atg7. PUBMED:23142983 EPMC:23142983


This tab holds annotation information from the InterPro database.

InterPro entry IPR032197

This is the N-terminal domain of ubiquitin-like modifier-activating enzyme ATG7. In Arabidopsis this domain binds the E2 enzymes ATG10 and ATG3 [PUBMED:23142983].

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the UniProtKB sequence database, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(142)
Full
(1294)
Representative proteomes UniProt
(1914)
NCBI
(2344)
Meta
(5)
RP15
(363)
RP35
(699)
RP55
(969)
RP75
(1184)
Jalview View  View  View  View  View  View  View  View  View 
HTML View  View               
PP/heatmap 1 View               

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(142)
Full
(1294)
Representative proteomes UniProt
(1914)
NCBI
(2344)
Meta
(5)
RP15
(363)
RP35
(699)
RP55
(969)
RP75
(1184)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(142)
Full
(1294)
Representative proteomes UniProt
(1914)
NCBI
(2344)
Meta
(5)
RP15
(363)
RP35
(699)
RP55
(969)
RP75
(1184)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: PDB:3vx8
Previous IDs: none
Type: Domain
Sequence Ontology: SO:0000417
Author: Eberhardt R
Number in seed: 142
Number in full: 1294
Average length of the domain: 278.90 aa
Average identity of full alignment: 27 %
Average coverage of the sequence by the domain: 42.78 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 45638612 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 27.0 27.0
Trusted cut-off 27.4 27.4
Noise cut-off 26.0 26.9
Model length: 300
Family (HMM) version: 5
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Hide

Weight segments by...


Change the size of the sunburst

Small
Large

Colour assignments

Archea Archea Eukaryota Eukaryota
Bacteria Bacteria Other sequences Other sequences
Viruses Viruses Unclassified Unclassified
Viroids Viroids Unclassified sequence Unclassified sequence

Selections

Align selected sequences to HMM

Generate a FASTA-format file

Clear selection

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the ATG7_N domain has been found. There are 17 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein sequence.

Loading structure mapping...