Summary: Glycosyl hydrolase family 63 N-terminal domain
Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.
This is the Wikipedia entry entitled "Glycoside hydrolase family 63". More...
Glycoside hydrolase family 63 Edit Wikipedia article
Mannosyl oligosaccharide glucosidase | |||||||||
---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||
Symbol | Glyco_hydro_63 | ||||||||
Pfam | PF03200 | ||||||||
Pfam clan | CL0059 | ||||||||
InterPro | IPR004888 | ||||||||
CAZy | GH63 | ||||||||
|
In molecular biology, glycoside hydrolase family 63 is a family of glycoside hydrolases.
Glycoside hydrolases EC 3.2.1. are a widespread group of enzymes that hydrolyse the glycosidic bond between two or more carbohydrates, or between a carbohydrate and a non-carbohydrate moiety. A classification system for glycoside hydrolases, based on sequence similarity, has led to the definition of >100 different families.[1][2][3] This classification is available on the CAZy(http://www.cazy.org/GH1.html) web site,[4] and also discussed at CAZypedia, an online encyclopedia of carbohydrate active enzymes. [5]
Glycosyl hydrolase family 63 (CAZY GH_63) is a family of eukaryotic enzymes. They catalyse the specific cleavage of the non-reducing terminal glucose residue from Glc(3)Man(9)GlcNAc(2). Mannosyl oligosaccharide glucosidase EC 3.2.1.106 is the first enzyme in the N-linked oligosaccharide processing pathway.
References
- ^ Henrissat B, Callebaut I, Mornon JP, Fabrega S, Lehn P, Davies G (1995). "Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases". Proc. Natl. Acad. Sci. U.S.A. 92 (15): 7090–7094. doi:10.1073/pnas.92.15.7090. PMC 41477. PMID 7624375.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Henrissat B, Davies G (1995). "Structures and mechanisms of glycosyl hydrolases". Structure. 3 (9): 853–859. doi:10.1016/S0969-2126(01)00220-9. PMID 8535779.
- ^ Bairoch, A. "Classification of glycosyl hydrolase families and index of glycosyl hydrolase entries in SWISS-PROT". 1999.
- ^ Henrissat, B. and Coutinho P.M. "Carbohydrate-Active Enzymes server". 1999.
- ^ CAZypedia, an online encyclopedia of carbohydrate-active enzymes.
This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.
This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.
Glycosyl hydrolase family 63 N-terminal domain Provide feedback
This is a family of eukaryotic enzymes belonging to glycosyl hydrolase family 63. They catalyse the specific cleavage of the non-reducing terminal glucose residue from Glc(3)Man(9)GlcNAc(2). Mannosyl oligosaccharide glucosidase EC:3.2.1.106 is the first enzyme in the N-linked oligosaccharide processing pathway. This family represents the N-terminal beta sandwich domain [1].
Literature references
-
Barker MK, Rose DR;, J Biol Chem. 2013;288:13563-13574.: Specificity of Processing alpha-glucosidase I is guided by the substrate conformation: crystallographic and in silico studies. PUBMED:23536181 EPMC:23536181
External database links
CAZY: | GH63 |
This tab holds annotation information from the InterPro database.
InterPro entry IPR031631
Glycoside hydrolases are a widespread group of enzymes that hydrolyse the glycosidic bond between two or more carbohydrates, or between a carbohydrate and a non-carbohydrate moiety. More than 100 different families of glycoside hydrolases have been defined based on sequence similarity.
This entry represents the N-terminal beta sandwich domain found in glycosyl hydrolase family 63 proteins [ PUBMED:23536181 ]. Glycosyl hydrolase family 63 is a family of eukaryotic enzymes that catalyse the specific cleavage of the non-reducing terminal glucose residue from Glc(3)Man(9)GlcNAc(2).
Domain organisation
Below is a listing of the unique domain organisations or architectures in which this domain is found. More...
Loading domain graphics...
Alignments
We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets and the UniProtKB sequence database. More...
View options
We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.
Seed (69) |
Full (1669) |
Representative proteomes | UniProt (2762) |
||||
---|---|---|---|---|---|---|---|
RP15 (345) |
RP35 (807) |
RP55 (1281) |
RP75 (1719) |
||||
Jalview | |||||||
HTML | |||||||
PP/heatmap | 1 |
1Cannot generate PP/Heatmap alignments for seeds; no PP data available
Key:
available,
not generated,
— not available.
Format an alignment
Download options
We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.
Seed (69) |
Full (1669) |
Representative proteomes | UniProt (2762) |
||||
---|---|---|---|---|---|---|---|
RP15 (345) |
RP35 (807) |
RP55 (1281) |
RP75 (1719) |
||||
Raw Stockholm | |||||||
Gzipped |
You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.
HMM logo
HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...
Trees
This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.
Note: You can also download the data file for the tree.
Curation and family details
This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.
Curation
Seed source: | Pfam-B_2589 (release 6.5) |
Previous IDs: | none |
Type: | Domain |
Sequence Ontology: | SO:0000417 |
Author: |
Mifsud W |
Number in seed: | 69 |
Number in full: | 1669 |
Average length of the domain: | 202.3 aa |
Average identity of full alignment: | 31 % |
Average coverage of the sequence by the domain: | 25.73 % |
HMM information
HMM build commands: |
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 61295632 -E 1000 --cpu 4 HMM pfamseq
|
||||||||||||
Model details: |
|
||||||||||||
Model length: | 227 | ||||||||||||
Family (HMM) version: | 8 | ||||||||||||
Download: | download the raw HMM for this family |
Species distribution
Sunburst controls
HideWeight segments by...
Change the size of the sunburst
Colour assignments
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Selections
Align selected sequences to HMM
Generate a FASTA-format file
Clear selection
This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...
Tree controls
HideThe tree shows the occurrence of this domain across different species. More...
Loading...
Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.
Structures
For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the Glyco_hydro_63N domain has been found. There are 5 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein sequence.
Loading structure mapping...
AlphaFold Structure Predictions
The list of proteins below match this family and have AlphaFold predicted structures. Click on the protein accession to view the predicted structure.