Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
6  structures 691  species 1  interaction 943  sequences 25  architectures

Family: PrpR_N (PF06506)

Summary: Propionate catabolism activator

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

The Pfam group coordinates the annotation of Pfam families in Wikipedia, but we have not yet assigned a Wikipedia article to this family. If you think that a particular Wikipedia article provides good annotation, please let us know.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Propionate catabolism activator Provide feedback

This domain is found at the N terminus of several sigma54- dependent transcriptional activators including PrpR, which activates catabolism of propionate.

Literature references

  1. Bramer CO, Steinbuchel A; , Microbiology 2001;147:2203-2214.: The methylcitric acid pathway in Ralstonia eutropha: new genes identified involved in propionate metabolism. PUBMED:11495997 EPMC:11495997

  2. Schultz JC, Takayama K; , Biochim Biophys Acta 1976;428:563-572.: Enzymatic synthesis of 2-O-alpha-D-mannopyranosyl-methyl-alpha-D-mannopyranoside by a cell-free particulate system of Mycobacterium smegmatis. PUBMED:6051 EPMC:6051

  3. Palacios S, Starai VJ, Escalante-Semerena JC; , J Bacteriol 2003;185:2802-2810.: Propionyl coenzyme A is a common intermediate in the 1,2-propanediol and propionate catabolic pathways needed for expression of the prpBCDE operon during growth of Salmonella enterica on 1,2-propanediol. PUBMED:12700259 EPMC:12700259

  4. Palacios S, Escalante-Semerena JC; , J Bacteriol 2000;182:905-910.: prpR, ntrA, and ihf functions are required for expression of the prpBCDE operon, encoding enzymes that catabolize propionate in Salmonella enterica serovar typhimurium LT2. PUBMED:10648513 EPMC:10648513


Internal database links

External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR010524

Two-component signal transduction systems enable bacteria to sense, respond, and adapt to a wide range of environments, stressors, and growth conditions [PUBMED:16176121]. Some bacteria can contain up to as many as 200 two-component systems that need tight regulation to prevent unwanted cross-talk [PUBMED:18076326]. These pathways have been adapted to response to a wide variety of stimuli, including nutrients, cellular redox state, changes in osmolarity, quorum signals, antibiotics, and more [PUBMED:12372152]. Two-component systems are comprised of a sensor histidine kinase (HK) and its cognate response regulator (RR) [PUBMED:10966457]. The HK catalyses its own auto-phosphorylation followed by the transfer of the phosphoryl group to the receiver domain on RR; phosphorylation of the RR usually activates an attached output domain, which can then effect changes in cellular physiology, often by regulating gene expression. Some HK are bifunctional, catalysing both the phosphorylation and dephosphorylation of their cognate RR. The input stimuli can regulate either the kinase or phosphatase activity of the bifunctional HK.

A variant of the two-component system is the phospho-relay system. Here a hybrid HK auto-phosphorylates and then transfers the phosphoryl group to an internal receiver domain, rather than to a separate RR protein. The phosphoryl group is then shuttled to histidine phosphotransferase (HPT) and subsequently to a terminal RR, which can evoke the desired response [PUBMED:11934609, PUBMED:11489844].

This entry represents a domain found at the N terminus of several sigma54- dependent transcriptional activators including PrpR, which activates catabolism of propionate. In Salmonella enterica subsp. enterica serovar Typhimurium, PrpR acts as a sensor of 2-methylcitrate (2-MC), an intermediate of the 2-methylcitric acid cycle used by this bacterium to convert propionate to pyruvate [PUBMED:15528672].

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(47)
Full
(943)
Representative proteomes NCBI
(633)
Meta
(15)
RP15
(31)
RP35
(67)
RP55
(92)
RP75
(118)
Jalview View  View  View  View  View  View  View  View 
HTML View  View  View  View  View  View     
PP/heatmap 1 View  View  View  View  View     
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(47)
Full
(943)
Representative proteomes NCBI
(633)
Meta
(15)
RP15
(31)
RP35
(67)
RP55
(92)
RP75
(118)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(47)
Full
(943)
Representative proteomes NCBI
(633)
Meta
(15)
RP15
(31)
RP35
(67)
RP55
(92)
RP75
(118)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Pfam-B_10794 (release 9.0)
Previous IDs: none
Type: Domain
Author: Studholme D
Number in seed: 47
Number in full: 943
Average length of the domain: 172.70 aa
Average identity of full alignment: 37 %
Average coverage of the sequence by the domain: 30.19 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 23193494 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 23.1 23.1
Trusted cut-off 23.1 23.1
Noise cut-off 23.0 22.4
Model length: 176
Family (HMM) version: 6
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Show

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Interactions

There is 1 interaction for this family. More...

PrpR_N

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the PrpR_N domain has been found. There are 6 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...