Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
1238  structures 1481  species 83  interactions 62266  sequences 1020  architectures

Family: Ras (PF00071)

Summary: Ras family

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Ras subfamily". More...

Ras subfamily Edit Wikipedia article

Redirect to:

  • From a page move: This is a redirect from a page that has been moved (renamed). This page was kept as a redirect to avoid breaking links, both internal and external, that may have been made to the old page name.

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This is the Wikipedia entry entitled "Ras superfamily". More...

Ras superfamily Edit Wikipedia article

Hras surface colored by conservation.png
H-Ras structure PDB 121p, surface colored by conservation in Pfam seed alignment: gold, most conserved; dark cyan, least conserved.
Identifiers
SymbolRas
PfamPF00071
InterProIPR013753
PROSITEPDOC00017
SCOPe5p21 / SUPFAM
CDDcd00882
Membranome206

The Ras superfamily is a protein superfamily of small GTPases.[1] Members of the superfamily are divided into families and subfamilies based on their structure, sequence and function. The five main families are Ras, Rho, Ran, Rab and Arf GTPases.[2] The Ras family itself is further divided into 6 subfamilies: Ras, Ral, Rap, Rheb, Rad and Rit. Miro is a recent contributor to the superfamily. Each subfamily shares the common core G domain, which provides essential GTPase and nucleotide exchange activity.

The surrounding sequence helps determine the functional specificity of the small GTPase, for example the 'Insert Loop', common to the Rho subfamily, specifically contributes to binding to effector proteins such as WASP.

In general, the Ras family is responsible for cell proliferation: Rho for cell morphology, Ran for nuclear transport, and Rab and Arf for vesicle transport.[3]

Subfamilies and members

The following is a list of human proteins belonging to the Ras superfamily:[1]

Overview
Subfamily Function Members
Ras cell proliferation [3] DIRAS1; DIRAS2; DIRAS3; ERAS; GEM; HRAS; KRAS; MRAS; NKIRAS1; NKIRAS2; NRAS; RALA; RALB; RAP1A; RAP1B; RAP2A; RAP2B; RAP2C; RASD1; RASD2; RASL10A; RASL10B; RASL11A; RASL11B; RASL12; REM1; REM2; RERG; RERGL; RRAD; RRAS; RRAS2
Rho cytoskeletal dynamics/morphology[3] RHOA; RHOB; RHOBTB1; RHOBTB2; RHOBTB3; RHOC; RHOD; RHOF; RHOG; RHOH; RHOJ; RHOQ; RHOU; RHOV; RND1; RND2; RND3; RAC1; RAC2; RAC3; CDC42
Rab membrane trafficking RAB1A; RAB1B; RAB2; RAB3A; RAB3B; RAB3C; RAB3D; RAB4A; RAB4B; RAB5A; RAB5B; RAB5C; RAB6A; RAB6B; RAB6C; RAB7A; RAB7B; RAB7L1; RAB8A; RAB8B; RAB9; RAB9B; RABL2A; RABL2B; RABL4; RAB10; RAB11A; RAB11B; RAB12; RAB13; RAB14; RAB15; RAB17; RAB18; RAB19; RAB20; RAB21; RAB22A; RAB23; RAB24; RAB25; RAB26; RAB27A; RAB27B; RAB28; RAB2B; RAB30; RAB31; RAB32; RAB33A; RAB33B; RAB34; RAB35; RAB36; RAB37; RAB38; RAB39; RAB39B; RAB40A; RAB40AL; RAB40B; RAB40C; RAB41; RAB42; RAB43
Rap cellular adhesion RAP1A; RAP1B; RAP2A; RAP2B; RAP2C
Arf vesicular transport[3] ARF1; ARF3; ARF4; ARF5; ARF6; ARL1; ARL2; ARL3; ARL4; ARL5; ARL5C; ARL6; ARL7; ARL8; ARL9; ARL10A; ARL10B; ARL10C; ARL11; ARL13A; ARL13B; ARL14; ARL15; ARL16; ARL17; TRIM23, ARL4D; ARFRP1; ARL13B
Ran nuclear transport RAN
Rheb mTOR pathway RHEB; RHEBL1
RGK RRAD; GEM; REM; REM2
Rit RIT1; RIT2
Miro mitochondrial transport RHOT1; RHOT2

Unclassified:

See also

References

  1. ^ a b Wennerberg K, Rossman KL, Der CJ (March 2005). "The Ras superfamily at a glance". J. Cell Sci. 118 (Pt 5): 843–6. doi:10.1242/jcs.01660. PMID 15731001.
  2. ^ Goitre, L; Trapani, E; Trabalzini, L; Retta, SF (26 December 2013). The Ras superfamily of small GTPases: the unlocked secrets. Methods in Molecular Biology. 1120. pp. 1–18. doi:10.1007/978-1-62703-791-4_1. ISBN 978-1-62703-790-7. PMID 24470015.
  3. ^ a b c d Munemitsu S, Innis M, Clark R, McCormick F, Ullrich A, Polakis P (1990). "Molecular cloning and expression of a G25K cDNA, the human homolog of the yeast cell cycle gene CDC42". Mol Cell Biol. 10 (11): 5977–82. doi:10.1128/MCB.10.11.5977. ISSN 0270-7306. PMC 361395. PMID 2122236.

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Ras family Provide feedback

Includes sub-families Ras, Rab, Rac, Ral, Ran, Rap Ypt1 and more. Shares P-loop motif with GTP_EFTU, arf and myosin_head. See PF00009 PF00025 PF00063. As regards Rab GTPases, these are important regulators of vesicle formation, motility and fusion. They share a fold in common with all Ras GTPases: this is a six-stranded beta-sheet surrounded by five alpha-helices [1].

Literature references

  1. Stenmark H, Olkkonen VM; , Genome Biol 2001;2:REVIEWS3007.: The Rab GTPase family. PUBMED:11387043 EPMC:11387043


Internal database links

External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR001806

Small GTPases form an independent superfamily within the larger class of regulatory GTP hydrolases. This superfamily contains proteins that control a vast number of important processes and possess a common, structurally preserved GTP-binding domain [PUBMED:2122258, PUBMED:1898771]. Sequence comparisons of small G proteins from various species have revealed that they are conserved in primary structures at the level of 30-55% similarity [PUBMED:2029511].

Crystallographic analysis of various small G proteins revealed the presence of a 20 kDa catalytic domain that is unique for the whole superfamily [PUBMED:1898771, PUBMED:2196171]. The domain is built of five alpha helices (A1-A5), six beta-strands (B1-B6) and five polypeptide loops (G1-G5). A structural comparison of the GTP- and GDP-bound form, allows one to distinguish two functional loop regions: switch I and switch II that surround the gamma-phosphate group of the nucleotide. The G1 loop (also called the P-loop) that connects the B1 strand and the A1 helix is responsible for the binding of the phosphate groups. The G3 loop provides residues for Mg(2+) and phosphate binding and is located at the N terminus of the A2 helix. The G1 and G3 loops are sequentially similar to Walker A and Walker B boxes that are found in other nucleotide binding motifs. The G2 loop connects the A1 helix and the B2 strand and contains a conserved Thr residue responsible for Mg(2+) binding. The guanine base is recognised by the G4 and G5 loops. The consensus sequence NKXD of the G4 loop contains Lys and Asp residues directly interacting with the nucleotide. Part of the G5 loop located between B6 and A5 acts as a recognition site for the guanine base [PUBMED:11995995].

The small GTPase superfamily can be divided into at least 8 different families, including:

  • Arf small GTPases. GTP-binding proteins involved in protein trafficking by modulating vesicle budding and uncoating within the Golgi apparatus.
  • Ran small GTPases. GTP-binding proteins involved in nucleocytoplasmic transport. Required for the import of proteins into the nucleus and also for RNA export.
  • Rab small GTPases. GTP-binding proteins involved in vesicular traffic.
  • Rho small GTPases. GTP-binding proteins that control cytoskeleton reorganisation.
  • Ras small GTPases. GTP-binding proteins involved in signalling pathways.
  • Sar1 small GTPases. Small GTPase component of the coat protein complex II (COPII) which promotes the formation of transport vesicles from the endoplasmic reticulum (ER).
  • Mitochondrial Rho (Miro). Small GTPase domain found in mitochondrial proteins involved in mitochondrial trafficking.
  • Roc small GTPases domain. Small GTPase domain always found associated with the COR domain.

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan P-loop_NTPase (CL0023), which has the following description:

AAA family proteins often perform chaperone-like functions that assist in the assembly, operation, or disassembly of protein complexes [2].

The clan contains the following 229 members:

6PF2K AAA AAA-ATPase_like AAA_10 AAA_11 AAA_12 AAA_13 AAA_14 AAA_15 AAA_16 AAA_17 AAA_18 AAA_19 AAA_2 AAA_21 AAA_22 AAA_23 AAA_24 AAA_25 AAA_26 AAA_27 AAA_28 AAA_29 AAA_3 AAA_30 AAA_31 AAA_32 AAA_33 AAA_34 AAA_35 AAA_5 AAA_6 AAA_7 AAA_8 AAA_9 AAA_PrkA ABC_ATPase ABC_tran ABC_tran_Xtn Adeno_IVa2 Adenylsucc_synt ADK AFG1_ATPase AIG1 APS_kinase Arf ArsA_ATPase ATP-synt_ab ATP_bind_1 ATP_bind_2 ATPase ATPase_2 Bac_DnaA BCA_ABC_TP_C Beta-Casp Cas_Csn2 Cas_St_Csn2 CbiA CBP_BcsQ CDC73_C CENP-M CFTR_R CLP1_P CMS1 CoaE CobA_CobO_BtuR CobU cobW CPT CSM2 CTP_synth_N Cytidylate_kin Cytidylate_kin2 DAP3 DBINO DEAD DEAD_2 DLIC DNA_pack_C DNA_pack_N DNA_pol3_delta DNA_pol3_delta2 DnaB_C dNK DUF1611 DUF1726 DUF2075 DUF2326 DUF2478 DUF257 DUF2791 DUF2813 DUF3584 DUF463 DUF815 DUF853 DUF87 DUF927 Dynamin_N Dynein_heavy Elong_Iki1 ELP6 ERCC3_RAD25_C Exonuc_V_gamma FeoB_N Fer4_NifH Flavi_DEAD FTHFS FtsK_SpoIIIE G-alpha Gal-3-0_sulfotr GBP GBP_C GTP_EFTU Gtr1_RagA Guanylate_kin GvpD HDA2-3 Helicase_C Helicase_C_2 Helicase_C_4 Helicase_RecD Herpes_Helicase Herpes_ori_bp Herpes_TK HSA HydF_dimer HydF_tetramer Hydin_ADK IIGP IPPT IPT IstB_IS21 KAP_NTPase KdpD Kinase-PPPase Kinesin KTI12 LAP1C Lon_2 LpxK MCM MeaB MEDS Mg_chelatase Microtub_bd MipZ MMR_HSR1 MMR_HSR1_C MobB MukB MutS_V Myosin_head NACHT NB-ARC NOG1 NTPase_1 NTPase_P4 ORC3_N ParA Parvo_NS1 PAXNEB PduV-EutP PhoH PIF1 Ploopntkinase1 Ploopntkinase2 Ploopntkinase3 Podovirus_Gp16 Polyoma_lg_T_C Pox_A32 PPK2 PPV_E1_C PRK PSY3 Rad17 Rad51 Ras RecA ResIII RHD3 RHSP RNA12 RNA_helicase Roc RsgA_GTPase RuvB_N SbcCD_C SecA_DEAD Septin Sigma54_activ_2 Sigma54_activat SKI SMC_N SNF2_N Spore_IV_A SRP54 SRPRB SulA Sulfotransfer_1 Sulfotransfer_2 Sulfotransfer_3 Sulfotransfer_4 Sulphotransf SWI2_SNF2 T2SSE T4SS-DNA_transf Terminase_1 Terminase_3 Terminase_6 Terminase_GpA Thymidylate_kin TIP49 TK TniB Torsin TraG-D_C tRNA_lig_kinase TrwB_AAD_bind TsaE UvrB UvrD-helicase UvrD_C UvrD_C_2 Viral_helicase1 VirC1 VirE Zeta_toxin Zot

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the UniProtKB sequence database, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(60)
Full
(62266)
Representative proteomes UniProt
(92656)
NCBI
(177220)
Meta
(3000)
RP15
(17834)
RP35
(33894)
RP55
(49839)
RP75
(59660)
Jalview View  View  View  View  View  View  View  View  View 
HTML View                 
PP/heatmap 1                

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(60)
Full
(62266)
Representative proteomes UniProt
(92656)
NCBI
(177220)
Meta
(3000)
RP15
(17834)
RP35
(33894)
RP55
(49839)
RP75
(59660)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(60)
Full
(62266)
Representative proteomes UniProt
(92656)
NCBI
(177220)
Meta
(3000)
RP15
(17834)
RP35
(33894)
RP55
(49839)
RP75
(59660)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download     Download  
Gzipped Download   Download   Download   Download   Download   Download   Download     Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Swissprot
Previous IDs: ras;
Type: Domain
Sequence Ontology: SO:0000417
Author: Sonnhammer ELL , Fenech M
Number in seed: 60
Number in full: 62266
Average length of the domain: 152.00 aa
Average identity of full alignment: 28 %
Average coverage of the sequence by the domain: 59.14 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 45638612 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 21.6 21.6
Trusted cut-off 21.6 21.6
Noise cut-off 21.5 21.5
Model length: 162
Family (HMM) version: 22
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Hide

Weight segments by...


Change the size of the sunburst

Small
Large

Colour assignments

Archea Archea Eukaryota Eukaryota
Bacteria Bacteria Other sequences Other sequences
Viruses Viruses Unclassified Unclassified
Viroids Viroids Unclassified sequence Unclassified sequence

Selections

Align selected sequences to HMM

Generate a FASTA-format file

Clear selection

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the Ras domain has been found. There are 1238 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein sequence.

Loading structure mapping...