Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
10  structures 405  species 0  interactions 1146  sequences 8  architectures

Family: RdRP_4 (PF02123)

Summary: Viral RNA-directed RNA-polymerase

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

The Pfam group coordinates the annotation of Pfam families in Wikipedia, but we have not yet assigned a Wikipedia article to this family. If you think that a particular Wikipedia article provides good annotation, please let us know.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Viral RNA-directed RNA-polymerase Provide feedback

This family includes RNA-dependent RNA polymerase proteins (RdRPs) from Luteovirus, Totivirus and Rotavirus.

Literature references

  1. Bruenn JA; , Nucleic Acids Res 1993;21:5667-5669.: A closely related group of RNA-dependent RNA polymerases from double-stranded RNA viruses. PUBMED:8284213 EPMC:8284213

  2. Patton JT, Chen D; , J Virol 1999;73:1382-1391.: RNA-binding and capping activities of proteins in rotavirus open cores. PUBMED:9882343 EPMC:9882343


Internal database links

External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR001795

RNA-directed RNA polymerase (RdRp) (EC) is an essential protein encoded in the genomes of all RNA containing viruses with no DNA stage [PUBMED:2759231, PUBMED:8709232]. It catalyses synthesis of the RNA strand complementary to a given RNA template, but the precise molecular mechanism remains unclear. The postulated RNA replication process is a two-step mechanism. First, the initiation step of RNA synthesis begins at or near the 3' end of the RNA template by means of a primer-independent (de novo) mechanism. The de novo initiation consists in the addition of a nucleotide tri-phosphate (NTP) to the 3'-OH of the first initiating NTP. During the following so-called elongation phase, this nucleotidyl transfer reaction is repeated with subsequent NTPs to generate the complementary RNA product [PUBMED:11531403].

All the RNA-directed RNA polymerases, and many DNA-directed polymerases, employ a fold whose organisation has been likened to the shape of a right hand with three subdomains termed fingers, palm and thumb [PUBMED:9309225]. Only the catalytic palm subdomain, composed of a four-stranded antiparallel beta-sheet with two alpha-helices, is well conserved among all of these enzymes. In RdRp, the palm subdomain comprises three well conserved motifs (A, B and C). Motif A (D-x(4,5)-D) and motif C (GDD) are spatially juxtaposed; the Asp residues of these motifs are implied in the binding of Mg2+ and/or Mn2+. The Asn residue of motif B is involved in selection of ribonucleoside triphosphates over dNTPs and thus determines whether RNA is synthesised rather than DNA [PUBMED:10827187]. The domain organisation [PUBMED:9878607] and the 3D structure of the catalytic centre of a wide range of RdPp's, even those with a low overall sequence homology, are conserved. The catalytic centre is formed by several motifs containing a number of conserved amino acid residues.

There are 4 superfamilies of viruses that cover all RNA containing viruses with no DNA stage:

  • Viruses containing positive-strand RNA or double-strand RNA, except retroviruses and Birnaviridae: viral RNA-directed RNA polymerases including all positive-strand RNA viruses with no DNA stage, double-strand RNA viruses, and the Cystoviridae, Reoviridae, Hypoviridae, Partitiviridae, Totiviridae families.
  • Mononegavirales (negative-strand RNA viruses with non-segmented genomes).
  • Negative-strand RNA viruses with segmented genomes, i.e. Orthomyxoviruses (including influenza A, B, and C viruses, Thogotoviruses, and the infectious salmon anemia virus), Arenaviruses, Bunyaviruses, Hantaviruses, Nairoviruses, Phleboviruses, Tenuiviruses and Tospoviruses.
  • Birnaviridae family of dsRNA viruses.
The RNA-directed RNA polymerases in the first of the above superfamilies can be divided into the following three subgroups:
  • All positive-strand RNA eukaryotic viruses with no DNA stage.
  • All RNA-containing bacteriophages -there are two families of RNA-containing bacteriophages: Leviviridae (positive ssRNA phages) and Cystoviridae (dsRNA phages).
  • Reoviridae family of dsRNA viruses.

The nucleotide sequence for the RNA of Potato leafroll virus (PLrV) has been determined [PUBMED:2732710, PUBMED:2466700]. The sequence contains six large open reading frames (ORFs). The 5' coding region encodes two polypeptides of 28K and 70K, which overlap in different reading frames; it is suggested that the third ORF in the 5' block is translated by frameshift read through near the end of the 70K protein, yielding a 118K polypeptide [PUBMED:2732710]. The C-terminal part of the 118K protein contains a consensus sequence for RNA-dependent RNA-polymerases [PUBMED:2732710].

The genomic RNA sequence of Southern bean mosaic virus (SBMV) has been determined [PUBMED:2823471]. The genome contains four ORFs. The largest ORF encodes the two largest proteins translated in cell-free extracts from full-length virion RNA [PUBMED:2823471]. Segments of the predicted amino acid sequence of this ORF resemble those of known viral RNA-polymerases, ATP-binding proteins and viral genome-linked proteins [PUBMED:2823471].

The genome sequence of Pea enation mosaic virus (PEMV) RNA 1 shows strong organisational relationships and sequence similarities to the Beet western yellows virus (BWYV) and PLrV [PUBMED:1875194]. Sequence analysis reveals five predominant ORFs. The third ORF is characterised by a number of RNA-polymerase motifs and a helicase-like motif typical of RNA-dependent RNA-polymerases [PUBMED:1875194]. It overlaps (out of frame) the ORF 2 product and is proposed to be expressed by a frameshift fusion of ORF 2 and ORF 3 [PUBMED:1875194].

The PLrV sequence shows some similarities to the putative polymerase of SBMV [PUBMED:2823471], and more extensive similarities to the corresponding BWYV polypeptide [PUBMED:3194229].

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan RdRP (CL0027), which has the following description:

This clan represents the replicative RNA dependent RNA polymerase. from a variety of RNA viruses [1].

The clan contains the following 8 members:

Flavi_NS5 Mitovir_RNA_pol RdRP_1 RdRP_2 RdRP_3 RdRP_4 RVT_1 RVT_2

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(28)
Full
(1146)
Representative proteomes NCBI
(4591)
Meta
(0)
RP15
(1)
RP35
(1)
RP55
(1)
RP75
(1)
Jalview View  View  View  View  View  View  View   
HTML View  View  View  View  View  View     
PP/heatmap 1 View  View  View  View  View     
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(28)
Full
(1146)
Representative proteomes NCBI
(4591)
Meta
(0)
RP15
(1)
RP35
(1)
RP55
(1)
RP75
(1)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(28)
Full
(1146)
Representative proteomes NCBI
(4591)
Meta
(0)
RP15
(1)
RP35
(1)
RP55
(1)
RP75
(1)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download    
Gzipped Download   Download   Download   Download   Download   Download   Download    

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: IPR001795 & Pfam-B_6212 (release 8.0) & Pfam-B_9867 (release 8.0)
Previous IDs: none
Type: Family
Author: Mian N, Bateman A
Number in seed: 28
Number in full: 1146
Average length of the domain: 427.20 aa
Average identity of full alignment: 31 %
Average coverage of the sequence by the domain: 60.01 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 23193494 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 20.1 20.1
Trusted cut-off 20.1 20.1
Noise cut-off 20.0 20.0
Model length: 500
Family (HMM) version: 11
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Show

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the RdRP_4 domain has been found. There are 10 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...