Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
110  structures 1613  species 3  interactions 4563  sequences 18  architectures

Family: Ring_hydroxyl_A (PF00848)

Summary: Ring hydroxylating alpha subunit (catalytic domain)

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

The Pfam group coordinates the annotation of Pfam families in Wikipedia, but we have not yet assigned a Wikipedia article to this family. If you think that a particular Wikipedia article provides good annotation, please let us know.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Ring hydroxylating alpha subunit (catalytic domain) Provide feedback

This family is the catalytic domain of aromatic-ring- hydroxylating dioxygenase systems. The active site contains a non-heme ferrous ion coordinated by three ligands.

External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR015879

Aromatic ring hydroxylating dioxygenases are multicomponent 1,2-dioxygenase complexes that convert closed-ring structures to non-aromatic cis-diols [PUBMED:1885518]. The complex has both hydroxylase and electron transfer components. The hydroxylase component is itself composed of two subunits: an alpha-subunit of about 50 kDa, and a beta-subunit of about 20 kDa. The electron transfer component is either composed of two subunits: a ferredoxin and a ferredoxin reductase or by a single bifunctional ferredoxin/reductase subunit. Sequence analysis of hydroxylase subunits of ring hydroxylating systems (including toluene, benzene and napthalene 1,2-dioxygenases) suggests they are derived from a common ancestor [PUBMED:1885518]. The alpha-subunit binds both a Rieske-like 2Fe-2S cluster and an iron atom: conserved Cys and His residues in the N-terminal region may provide 2Fe-2S ligands, while conserved His and Tyr residues may coordinate the iron. The beta subunit may be responsible for the substrate specificity of the dioxygenase system [PUBMED:1885518]. This entry represents the conserved C-terminal domain found in the alpha subunit of aromatic-ring-hydroxylating dioxygenases.

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan Bet_V_1_like (CL0209), which has the following description:

The Bet_V_I family is composed of sequences related to the major Birch (Betula verrucose) pollen antigen Betv1. This allergen is known to cause hayfever, dermatitis, asthma and occasionally anaphylactic shock. The other families in this clan share the same structure as Betv1 which is composed of antiparallel beta sheets and alpha helices. There is a cavity between the beta sheet and a long C terminal helix. The cavity appears to play roles in the binding of lipid molecules [1][2][3] which seems a common feature of the families in this clan.

The clan contains the following 14 members:

AHSA1 Aromatic_hydrox Bet_v_1 COXG DUF1857 DUF2505 DUF3074 DUF3211 DUF3284 IP_trans Polyketide_cyc Polyketide_cyc2 Ring_hydroxyl_A START

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(128)
Full
(4563)
Representative proteomes NCBI
(3945)
Meta
(3034)
RP15
(181)
RP35
(516)
RP55
(777)
RP75
(962)
Jalview View  View  View  View  View  View  View  View 
HTML View  View  View  View  View  View     
PP/heatmap 1 View  View  View  View  View     
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(128)
Full
(4563)
Representative proteomes NCBI
(3945)
Meta
(3034)
RP15
(181)
RP35
(516)
RP55
(777)
RP75
(962)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(128)
Full
(4563)
Representative proteomes NCBI
(3945)
Meta
(3034)
RP15
(181)
RP35
(516)
RP55
(777)
RP75
(962)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Pfam-B_407 (release 3.0)
Previous IDs: none
Type: Domain
Author: Bateman A
Number in seed: 128
Number in full: 4563
Average length of the domain: 206.60 aa
Average identity of full alignment: 16 %
Average coverage of the sequence by the domain: 58.44 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 23193494 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 20.2 20.2
Trusted cut-off 20.2 20.2
Noise cut-off 20.1 20.1
Model length: 209
Family (HMM) version: 14
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Show

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Interactions

There are 3 interactions for this family. More...

Rieske Ring_hydroxyl_A Ring_hydroxyl_B

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the Ring_hydroxyl_A domain has been found. There are 110 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...