Summary: SBDS protein C-terminal domain
Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.
This is the Wikipedia entry entitled "SBDS". More...
This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.
This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.
SBDS protein C-terminal domain Provide feedback
This family is highly conserved in species ranging from archaea to vertebrates and plants. The family contains several Shwachman-Bodian-Diamond syndrome (SBDS) proteins from both mouse and humans. Shwachman-Diamond syndrome is an autosomal recessive disorder with clinical features that include pancreatic exocrine insufficiency, haematological dysfunction and skeletal abnormalities. Members of this family play a role in RNA metabolism [2] [3].
Literature references
-
Boocock GR, Morrison JA, Popovic M, Richards N, Ellis L, Durie PR, Rommens JM; , Nat Genet 2003;33:97-101.: Mutations in SBDS are associated with Shwachman-Diamond syndrome. PUBMED:12496757 EPMC:12496757
-
Savchenko A, Krogan N, Cort JR, Evdokimova E, Lew JM, Yee AA, Sanchez-Pulido L, Andrade MA, Bochkarev A, Watson JD, Kennedy MA, Greenblatt J, Hughes T, Arrowsmith CH, Rommens JM, Edwards AM; , J Biol Chem 2005; [Epub ahead of print]: The SHWACHMAN-Bodian-diamond syndromeprotein family is involved in RNA metabolism. PUBMED:15701634 EPMC:15701634
-
Shammas C, Menne TF, Hilcenko C, Michell SR, Goyenechea B, Boocock GR, Durie PR, Rommens JM, Warren AJ; , J Biol Chem 2005; [Epub ahead of print]: Structural and mutational analysis of the SBDS protein family: insight into the leukemia-associated shwachman-diamond syndrome. PUBMED:15701631 EPMC:15701631
External database links
SCOP: | 1nyn |
This tab holds annotation information from the InterPro database.
InterPro entry IPR018978
This entry represents the C-terminal domain of proteins that are highly conserved in species ranging from archaea to vertebrates and plants [PUBMED:12496757]. The family contains several Shwachman-Bodian-Diamond syndrome (SBDS, OMIM 260400) proteins from both mouse and humans. Shwachman-Diamond syndrome is an autosomal recessive disorder with clinical features that include pancreatic exocrine insufficiency, haematological dysfunction and skeletal abnormalities. It is characterised by bone marrow failure and leukemia predisposition. Members of this family play a role in RNA metabolism [PUBMED:15701631, PUBMED:15701634]. In yeast Sdo1 is involved in the biogenesis of the 60S ribosomal subunit and translational activation of ribosomes. Together with the EF-2-like GTPase RIA1 (EfI1), it triggers the GTP-dependent release of TIF6 from 60S pre-ribosomes in the cytoplasm, thereby activating ribosomes for translation competence by allowing 80S ribosome assembly and facilitating TIF6 recycling to the nucleus, where it is required for 60S rRNA processing and nuclear export. This data links defective late 60S subunit maturation to an inherited bone marrow failure syndrome associated with leukemia predisposition [PUBMED:17353896].
A number of uncharacterised hydrophilic proteins of about 30kDa share regions of similarity. These include,
- Mouse protein 22A3.
- Saccharomyces cerevisiae chromosome XII hypothetical protein YLR022c.
- Caenorhabditis elegans hypothetical protein W06E11.4.
- Methanocaldococcus jannaschii (Methanococcus jannaschii) hypothetical protein MJ0592.
Gene Ontology
The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.
Biological process | ribosome biogenesis (GO:0042254) |
Domain organisation
Below is a listing of the unique domain organisations or architectures in which this domain is found. More...
Loading domain graphics...
Pfam Clan
This family is a member of clan EF-G_C (CL0437), which has the following description:
This superfamily is characterised by being an alpha-beta 2-Layer Sandwich. It is found in EF2 proteins from both prokaryotes and eukaryotes, as well as in some tetracycline resistance proteins, peptide chain release factors ], and in the C-terminal region of the bacterial hypothetical protein, YigZ.
The clan contains the following 5 members:
DUF1949 EFG_C EFG_III RF3_C SBDS_CAlignments
We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the UniProtKB sequence database, the NCBI sequence database, and our metagenomics sequence database. More...
View options
We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.
Seed (237) |
Full (1522) |
Representative proteomes | UniProt (3746) |
NCBI (3850) |
Meta (96) |
||||
---|---|---|---|---|---|---|---|---|---|
RP15 (309) |
RP35 (722) |
RP55 (1176) |
RP75 (1703) |
||||||
Jalview | |||||||||
HTML | |||||||||
PP/heatmap | 1 |
1Cannot generate PP/Heatmap alignments for seeds; no PP data available
Key:
available,
not generated,
— not available.
Format an alignment
Download options
We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.
Seed (237) |
Full (1522) |
Representative proteomes | UniProt (3746) |
NCBI (3850) |
Meta (96) |
||||
---|---|---|---|---|---|---|---|---|---|
RP15 (309) |
RP35 (722) |
RP55 (1176) |
RP75 (1703) |
||||||
Raw Stockholm | |||||||||
Gzipped |
You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.
HMM logo
HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...
Trees
This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.
Note: You can also download the data file for the tree.
Curation and family details
This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.
Curation
Seed source: | Bateman A |
Previous IDs: | none |
Type: | Domain |
Sequence Ontology: | SO:0000417 |
Author: |
Bateman A |
Number in seed: | 237 |
Number in full: | 1522 |
Average length of the domain: | 138.40 aa |
Average identity of full alignment: | 32 % |
Average coverage of the sequence by the domain: | 48.60 % |
HMM information
HMM build commands: |
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 47079205 -E 1000 --cpu 4 HMM pfamseq
|
||||||||||||
Model details: |
|
||||||||||||
Model length: | 114 | ||||||||||||
Family (HMM) version: | 11 | ||||||||||||
Download: | download the raw HMM for this family |
Species distribution
Sunburst controls
HideWeight segments by...
Change the size of the sunburst
Colour assignments
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Selections
Align selected sequences to HMM
Generate a FASTA-format file
Clear selection
This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...
Tree controls
HideThe tree shows the occurrence of this domain across different species. More...
Loading...
Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.
Structures
For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the SBDS_C domain has been found. There are 11 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein sequence.
Loading structure mapping...