Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
373  structures 444  species 11  interactions 10749  sequences 695  architectures

Family: SH3_1 (PF00018)

Summary: SH3 domain

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "SH3 domain". More...

SH3 domain Edit Wikipedia article

SH3 domain
1shg SH3 domain.png
Ribbon diagram of the SH3 domain, alpha spectrin, from chicken (PDB accession code 1SHG), colored from blue (N-terminus) to red (C-terminus).
Identifiers
Symbol SH3_1
Pfam PF00018
Pfam clan CL0010
InterPro IPR001452
SMART SM00326
PROSITE PS50002
SCOP 1shf
SUPERFAMILY 1shf
CDD cd00174

The SRC Homology 3 Domain (or SH3 domain) is a small protein domain of about 60 amino acids residues first identified as a conserved sequence in the viral adaptor protein v-Crk and the non-catalytic parts of enzymes such as phospholipase and several cytoplasmic tyrosine kinases such as Abl and Src.[1][2] It has also been identified in several other protein families such as: PI3 Kinase, Ras GTPase-activating protein, CDC24 and cdc25.[3][4][5] SH3 domains are found in proteins of signaling pathways regulating the cytoskeleton, the Ras protein, and the Src kinase and many others. They also regulate the activity state of adaptor proteins and other tyrosine kinases and are thought to increase the substrate specificity of some tyrosine kinases by binding far away from the active site of the kinase. Approximately 300 SH3 domains are found in proteins encoded in the human genome.

Structure

The SH3 domain has a characteristic beta-barrel fold that consists of five or six β-strands arranged as two tightly packed anti-parallel β sheets. The linker regions may contain short helices. The SH3-type fold is an ancient fold found in eukaryotes as well as prokaryotes.[6]

Peptide binding

The classical SH3 domain is usually found in proteins that interact with other proteins and mediate assembly of specific protein complexes, typically via binding to proline-rich peptides in their respective binding partner. Classical SH3 domains are restricted in humans to intracellular proteins, although the small human MIA family of extracellular proteins also contain a domain with an SH3-like fold.

Many SH3-binding epitopes of proteins have a consensus sequence that can be represented as a regular expression or Short linear motif:

-X-P-p-X-P-
 1 2 3 4 5

with 1 and 4 being aliphatic amino acids, 2 and 5 always and 3 sometimes being proline. The sequence binds to the hydrophobic pocket of the SH3 domain. More recently, SH3 domains that bind to a core consensus motif R-x-x-K have been described. Examples are the C-terminal SH3 domains of adaptor proteins like Grb2 and Mona (a.k.a. Gads, Grap2, Grf40, GrpL etc.). Other SH3 binding motifs have emerged and are still emerging in the course of various molecular studies, highlighting the versatility of this domain.

Proteins with SH3 domain

See also

References

  1. ^ Pawson T, Schlessingert J (July 1993). "SH2 and SH3 domains". Curr. Biol. 3 (7): 434–42. doi:10.1016/0960-9822(93)90350-W. PMID 15335710. 
  2. ^ Mayer BJ (April 2001). "SH3 domains: complexity in moderation". J. Cell. Sci. 114 (Pt 7): 1253–63. PMID 11256992. 
  3. ^ Musacchio A, Gibson T, Lehto VP, Saraste M (July 1992). "SH3--an abundant protein domain in search of a function". FEBS Lett. 307 (1): 55–61. doi:10.1016/0014-5793(92)80901-R. PMID 1639195. 
  4. ^ Mayer BJ, Baltimore D (January 1993). "Signalling through SH2 and SH3 domains". Trends Cell Biol. 3 (1): 8–13. doi:10.1016/0962-8924(93)90194-6. PMID 14731533. 
  5. ^ Pawson T (February 1995). "Protein modules and signalling networks". Nature 373 (6515): 573–80. doi:10.1038/373573a0. PMID 7531822. 
  6. ^ Whisstock JC, Lesk AM (April 1999). "SH3 domains in prokaryotes". Trends Biochem. Sci. 24 (4): 132–3. doi:10.1016/s0968-0004(99)01366-3. PMID 10322416. 

External links

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

SH3 domain Provide feedback

SH3 (Src homology 3) domains are often indicative of a protein involved in signal transduction related to cytoskeletal organisation. First described in the Src cytoplasmic tyrosine kinase P12931. The structure is a partly opened beta barrel.

Literature references

  1. Kami K, Takeya R, Sumimoto H, Kohda D; , EMBO J 2002;21:4268-4276.: Diverse recognition of non-PxxP peptide ligands by the SH3 domains from p67(phox), Grb2 and Pex13p. PUBMED:12169629 EPMC:12169629


Internal database links

External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR001452

SH3 (src Homology-3) domains are small protein modules containing approximately 50 amino acid residues [PUBMED:15335710, PUBMED:11256992]. They are found in a great variety of intracellular or membrane-associated proteins [PUBMED:1639195, PUBMED:14731533, PUBMED:7531822] for example, in a variety of proteins with enzymatic activity, in adaptor proteins that lack catalytic sequences and in cytoskeletal proteins, such as fodrin and yeast actin binding protein ABP-1.

The SH3 domain has a characteristic fold which consists of five or six beta-strands arranged as two tightly packed anti-parallel beta sheets. The linker regions may contain short helices [PUBMED:]. The surface of the SH3-domain bears a flat, hydrophobic ligand-binding pocket which consists of three shallow grooves defined by conservative aromatic residues in which the ligand adopts an extended left-handed helical arrangement. The ligand binds with low affinity but this may be enhanced by multiple interactions. The region bound by the SH3 domain is in all cases proline-rich and contains PXXP as a core-conserved binding motif. The function of the SH3 domain is not well understood but they may mediate many diverse processes such as increasing local concentration of proteins, altering their subcellular location and mediating the assembly of large multiprotein complexes [PUBMED:7953536].

The crystal structure of the SH3 domain of the cytoskeletal protein spectrin, and the solution structures of SH3 domains of phospholipase C (PLC-y) and phosphatidylinositol 3-kinase p85 alpha-subunit, have been determined [PUBMED:1279434, PUBMED:7684655, PUBMED:7681365]. In spite of relatively limited sequence similarity, their overall structures are similar. The domains belong to the alpha+beta structural class, with 5 to 8 beta-strands forming 2 tightly-packed, anti-parallel beta-sheets arranged in a barrel-like structure, and intervening loops sometimes forming helices. Conserved aliphatic and aromatic residues form a hydrophobic core (A11, L23, A29, V34, W42, L52 and V59 in PLC-y [PUBMED:7681365]) and a hydrophobic pocket on the molecular surface (L12, F13, W53 and P55 in PLC-y). The conserved core is believed to stabilise the fold, while the pocket is thought to serve as a binding site for target proteins. Conserved carboxylic amino acids located in the loops, on the periphery of the pocket (D14 and E22), may be involved in protein-protein interactions via proline-rich regions. The N- and C-termini are packed in close proximity, indicating that they are independent structural modules.

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan SH3 (CL0010), which has the following description:

Src homology-3 (SH3) domains are comprised of about 60 amino acids, performing either an assembly or regulatory role. For example, SH3 domains in the Grb2 adaptor protein are essential for protein-protein interactions and signal transduction in the p21 Ras-dependent growth factor signaling pathway. Alternatively, SH3 performs a regulatory role in the Src family of tyrosine kinases. SH3 domains bind a variety of peptide ligands, many of which contain a PxxP motif. This PxxP motif is flanked by different specificity elements [1]. Structures of SH3 domains, both free and ligand complexed, have provided insights into the mechanism of ligand recognition. The SH3 fold consists of two anti-parallel beta sheets that lie at right angles to each other. Within the fold, there are two variable loops, referred to as RT and n-Src loops. When SH3 binds to its ligand, the proline rich ligand adopts a PPII helix conformation, with the PPII helix structure recognised by a pair of grooves on the surface of the SH3 domain that bind turns of the helix. The SH3 grooves are formed by a series of nearly parallel, well-conserved aromatic residues [1].

The clan contains the following 9 members:

hSH3 SH3_1 SH3_2 SH3_3 SH3_4 SH3_5 SH3_6 SH3_8 SH3_9

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(61)
Full
(10749)
Representative proteomes NCBI
(20245)
Meta
(89)
RP15
(1639)
RP35
(2410)
RP55
(4041)
RP75
(5929)
Jalview View  View  View  View  View  View  View  View 
HTML View    View  View  View       
PP/heatmap 1   View  View  View       
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(61)
Full
(10749)
Representative proteomes NCBI
(20245)
Meta
(89)
RP15
(1639)
RP35
(2410)
RP55
(4041)
RP75
(5929)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(61)
Full
(10749)
Representative proteomes NCBI
(20245)
Meta
(89)
RP15
(1639)
RP35
(2410)
RP55
(4041)
RP75
(5929)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Prosite
Previous IDs: SH3;
Type: Domain
Author: Cerutti L, Sonnhammer ELL, Eddy SR, Finn RD
Number in seed: 61
Number in full: 10749
Average length of the domain: 47.10 aa
Average identity of full alignment: 29 %
Average coverage of the sequence by the domain: 7.39 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 23193494 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 22.9 22.9
Trusted cut-off 22.9 22.9
Noise cut-off 22.8 22.8
Model length: 48
Family (HMM) version: 23
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Show

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Interactions

There are 11 interactions for this family. More...

PB1 SH3_2 LIM RhoGEF SH3_1 SH2 P53 Pkinase_Tyr PH ubiquitin Ank

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the SH3_1 domain has been found. There are 373 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...