Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
79  structures 7179  species 0  interactions 69218  sequences 1549  architectures

Family: SNF2-rel_dom (PF00176)

Summary: SNF2-related domain

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "SWI/SNF". More...

SWI/SNF Edit Wikipedia article

Snf2 ATPase bound to a nucleosome
Snf2 ATPase domain in complex with a nucleosome.png
Cryo-EM reconstruction of S. cerevisiae Snf2 ATPase in complex with a nucleosome
Identifiers
SymbolSnf2
PfamPF00176
InterProIPR000330
SMARTDEXDc
SCOP25x0x / SCOPe / SUPFAM

In molecular biology, SWI/SNF (SWItch/Sucrose Non-Fermentable),[1][2] is a subfamily of ATP-dependent chromatin remodeling complexes, which is found in eukaryotes. In other words, it is a group of proteins that associate to remodel the way DNA is packaged. This complex is composed of several proteins – products of the SWI and SNF genes (SWI1, SWI2/SNF2, SWI3, SWI5, SWI6), as well as other polypeptides.[3] It possesses a DNA-stimulated ATPase activity that can destabilize histone-DNA interactions in reconstituted nucleosomes in an ATP-dependent manner, though the exact nature of this structural change is unknown. The SWI/SNF subfamily provides crucial nucleosome rearrangement, which is seen as ejection and/or sliding. The movement of nucleosomes provides easier access to the chromatin, allowing genes to be activated or repressed.[4]

The human analogs of SWI/SNF are "BRG1- or BRM-associated factors", or BAF (SWI/SNF-A) and "Polybromo-associated BAF", which is also known as PBAF (SWI/SNF-B).[5] There are also Drosophila analogs of SWI/SNF, known as "Brahma Associated Protein", or BAP and "Polybromo-associated BAP", also known as PBAP.[6]

Mechanism of action

It has been found that the SWI/SNF complex (in yeast) is capable of altering the position of nucleosomes along DNA.[7] These alterations are classified in three different ways, and they are seen as the processes of sliding nucleosomes, ejecting nucleosomes, and ejecting only certain components of the nucleosome.[4] Due to the actions performed by the SWI/SNF subfamily, they are referred to as "access remodellers" and promote gene expression by exposing binding sites so that transcription factors can bind more easily.[4] Two mechanisms for nucleosome remodeling by SWI/SNF have been proposed.[8] The first model contends that a unidirectional diffusion of a twist defect within the nucleosomal DNA results in a corkscrew-like propagation of DNA over the octamer surface that initiates at the DNA entry site of the nucleosome. The other is known as the "bulge" or "loop-recapture" mechanism and it involves the dissociation of DNA at the edge of the nucleosome with re-association of DNA inside the nucleosome, forming a DNA bulge on the octamer surface. The DNA loop would then propagate across the surface of the histone octamer in a wave-like manner, resulting in the re-positioning of DNA without changes in the total number of histone-DNA contacts.[9] A recent study[10] has provided strong evidence against the twist diffusion mechanism and has further strengthened the loop-recapture model.

Role as a tumor suppressor

The mammalian SWI/SNF (mSWI/SNF) complex functions as a tumor suppressor in many human malignant cancers.[11] Early studies identified that SWI/SNF subunits were frequently absent in cancer cell lines.[12] SWI/SNF was first identified in 1998 as a tumor suppressor in rhabdoid tumors, a rare pediatric malignant cancer.[13] Other instances of SWI/SNF acting as a tumor suppressor comes from the heterozygous deletion of BAF47[14] or alteration of BAF47.[15] These instances result in cases of chronic and acute CML and in rarer cases, Hodgkin's lymphoma, respectively. To prove that BAF47, also known as SMARCB1, acts as a tumor suppressor, experiments resulting in the formation of rhabdoid tumors in mice were conducted via total knockout of BAF47.[16] As DNA sequencing costs diminished, many tumors were sequenced for the first time around 2010. Several of these studies revealed SWI/SNF to be a tumor suppressor in a number of diverse malignancies.[17][18][19][20] Several studies revealed that subunits of the mammalian complex, including ARID1A,[21] PBRM1,[20] SMARCB1,[22] SMARCA4,[23] and ARID2,[18] are frequently mutated in human cancers. It has been noted that total loss of BAF47 is extremely rare and instead, most cases of tumors that resulted from SWI/SNF subunits come from BRG1 deletion, BRM deletion, or total loss of both subunits.[24] Further analysis concluded that total loss of both subunits was present in about 10% of tumor cell lines after 100 cell lines were looked at.[25] A meta-analysis of many sequencing studies demonstrated SWI/SNF to be mutated in approximately 20% of human malignancies.[26]

Structure of the SWI/SNF complex

Domain organization of SWI/SNF: a subfamily within the ATP-Dependent chromatin remodeling complexes

Electron microscopy studies of SWI/SNF and RSC (SWI/SNF-B) reveal large, lobed 1.1-1.3 MDa structures.[27][28][29][30] These structures resemble RecA and cover both sides of a conserved section of the ATPase domain. The domain also contains a separate domain, HSA, that is capable of binding actin, and resides on the N-terminus.[4] The bromo domain present is responsible for recognizing and binding lysines that have been acetylated.[6] No atomic-resolution structures of the entire SWI/SNF complex have been obtained to date, due to the protein complex being highly dynamic and composed of many subunits. However, domains and several individual subunits from yeast and mammals have been described. In particular, the cryo-EM structure of the ATPase Snf2 in complex with a nucleosome shows that nucleosomal DNA is locally deformed at the site of binding.[31] A model of the mammalian ATPase SMARCA4 shows similar features,[23] based on the high degree of sequence homology with yeast Snf2. The interface between two subunits, BAF155 (SMARCC1) and BAF47 (SMARCB1) was also resolved, providing important insights into the mechanisms of the SWI/SNF complex assembly pathway.[32]

SWIB/MDM2 protein domain

The protein domain, SWIB/MDM2, short for SWI/SNF complex B/MDM2 is an important domain. This protein domain has been found in both SWI/SNF complex B and in the negative regulator of the p53 tumor suppressor MDM2. It has been shown that MDM2 is homologous to the SWIB complex.[33]

Function

The primary function of the SWIB protein domain is to aid gene expression. In yeast, this protein domain expresses certain genes, in particular BADH2, GAL1, GAL4, and SUC2. It works by increasing transcription. It has ATPase activity, meaning it breaks down ATP, the basic unit of energy currency. This destabilizes the interaction between DNA and histones. The destabilization that occurs disrupts chromatin and opens up the transcription-binding domains. Transcription factors can then bind to this site, leading to an increase in transcription.[34]

Protein interaction

The interactions between the proteins of the SWI/SNF complex and the chromatin allows binding of transcription factors, therefore causing an increase in transcription.[34]

Structure

This protein domain is known to contain one short alpha helix.

Family members

Below is a list of yeast SWI/SNF family members with human and Drosophila[35] orthologs:[36]

Yeast Human Drosophila Function
SWI1 ARID1A, ARID1B OSA Contains LXXLL nuclear receptor binding motifs
SWI2/SNF2 SMARCA2, SMARCA4 BRM ATP dependent chromatin remodeling
SWI3 SMARCC1, SMARCC2 Moira/BAP155 Similar sequence; function unknown
SWP73/SNF12 SMARCD1, SMARCD2, SMARCD3 BAP60 Similar sequence; function unknown
SWP61/ARP7 ACTL6A, ACTL6B Actin-like protein
SNF5 SMARCB1 SNR1 ATP dependent chromatin remodeling

History

The SWI/SNF complex was first discovered in the yeast, Saccharomyces cerevisiae. It was named after initially screening for mutations that would affect the pathways for both yeast mating types switching (SWI) and sucrose non-fermenting (SNF).[34][6]

See also

References

  1. ^ Neigeborn L, Carlson M (December 1984). "Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae". Genetics. 108 (4): 845–58. doi:10.1093/genetics/108.4.845. PMC 1224269. PMID 6392017.
  2. ^ Stern M, Jensen R, Herskowitz I (October 1984). "Five SWI genes are required for expression of the HO gene in yeast". Journal of Molecular Biology. 178 (4): 853–68. doi:10.1016/0022-2836(84)90315-2. PMID 6436497.
  3. ^ Pazin MJ, Kadonaga JT (March 1997). "SWI2/SNF2 and related proteins: ATP-driven motors that disrupt protein-DNA interactions?". Cell. 88 (6): 737–40. doi:10.1016/S0092-8674(00)81918-2. PMID 9118215.
  4. ^ a b c d Clapier CR, Iwasa J, Cairns BR, Peterson CL (July 2017). "Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes". Nature Reviews. Molecular Cell Biology. 18 (7): 407–422. doi:10.1038/nrm.2017.26. PMC 8127953. PMID 28512350.
  5. ^ Nie Z, Yan Z, Chen EH, Sechi S, Ling C, Zhou S, et al. (April 2003). "Novel SWI/SNF chromatin-remodeling complexes contain a mixed-lineage leukemia chromosomal translocation partner". Molecular and Cellular Biology. 23 (8): 2942–52. doi:10.1128/MCB.23.8.2942-2952.2003. PMC 152562. PMID 12665591.
  6. ^ a b c Tang L, Nogales E, Ciferri C (June 2010). "Structure and function of SWI/SNF chromatin remodeling complexes and mechanistic implications for transcription". Progress in Biophysics and Molecular Biology. 102 (2–3): 122–8. doi:10.1016/j.pbiomolbio.2010.05.001. PMC 2924208. PMID 20493208.
  7. ^ Whitehouse I, Flaus A, Cairns BR, White MF, Workman JL, Owen-Hughes T (August 1999). "Nucleosome mobilization catalysed by the yeast SWI/SNF complex". Nature. 400 (6746): 784–7. Bibcode:1999Natur.400..784W. doi:10.1038/23506. PMID 10466730. S2CID 2841873.
  8. ^ van Holde K, Yager T (June 2003). "Models for chromatin remodeling: a critical comparison". Biochemistry and Cell Biology. 81 (3): 169–72. doi:10.1139/o03-038. PMID 12897850.
  9. ^ Flaus A, Owen-Hughes T (April 2003). "Mechanisms for nucleosome mobilization". Biopolymers. 68 (4): 563–78. doi:10.1002/bip.10323. PMID 12666181.
  10. ^ Zofall M, Persinger J, Kassabov SR, Bartholomew B (April 2006). "Chromatin remodeling by ISW2 and SWI/SNF requires DNA translocation inside the nucleosome". Nature Structural & Molecular Biology. 13 (4): 339–46. doi:10.1038/nsmb1071. PMID 16518397. S2CID 24163324.
  11. ^ Hodges C, Kirkland JG, Crabtree GR (August 2016). "The Many Roles of BAF (mSWI/SNF) and PBAF Complexes in Cancer". Cold Spring Harbor Perspectives in Medicine. 6 (8): a026930. doi:10.1101/cshperspect.a026930. PMC 4968166. PMID 27413115.
  12. ^ Dunaief JL, Strober BE, Guha S, Khavari PA, Alin K, Luban J, et al. (October 1994). "The retinoblastoma protein and BRG1 form a complex and cooperate to induce cell cycle arrest". Cell. 79 (1): 119–30. doi:10.1016/0092-8674(94)90405-7. PMID 7923370. S2CID 7058539.
  13. ^ Versteege I, Sévenet N, Lange J, Rousseau-Merck MF, Ambros P, Handgretinger R, et al. (July 1998). "Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer". Nature. 394 (6689): 203–6. Bibcode:1998Natur.394..203V. doi:10.1038/28212. PMID 9671307. S2CID 6019090.
  14. ^ Melo JV, Gordon DE, Cross NC, Goldman JM (January 1993). "The ABL-BCR fusion gene is expressed in chronic myeloid leukemia". Blood. 81 (1): 158–65. doi:10.1182/blood.v81.1.158.bloodjournal811158. PMID 8417787.
  15. ^ Yuge M, Nagai H, Uchida T, Murate T, Hayashi Y, Hotta T, et al. (October 2000). "HSNF5/INI1 gene mutations in lymphoid malignancy". Cancer Genetics and Cytogenetics. 122 (1): 37–42. doi:10.1016/s0165-4608(00)00274-0. PMID 11104031.
  16. ^ Reisman D, Glaros S, Thompson EA (April 2009). "The SWI/SNF complex and cancer". Oncogene. 28 (14): 1653–68. doi:10.1038/onc.2009.4. PMID 19234488.
  17. ^ Wiegand KC, Shah SP, Al-Agha OM, Zhao Y, Tse K, Zeng T, et al. (October 2010). "ARID1A mutations in endometriosis-associated ovarian carcinomas". The New England Journal of Medicine. 363 (16): 1532–43. doi:10.1056/NEJMoa1008433. PMC 2976679. PMID 20942669.
  18. ^ a b Li M, Zhao H, Zhang X, Wood LD, Anders RA, Choti MA, et al. (August 2011). "Inactivating mutations of the chromatin remodeling gene ARID2 in hepatocellular carcinoma". Nature Genetics. 43 (9): 828–9. doi:10.1038/ng.903. PMC 3163746. PMID 21822264.
  19. ^ Shain AH, Giacomini CP, Matsukuma K, Karikari CA, Bashyam MD, Hidalgo M, et al. (January 2012). "Convergent structural alterations define SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeler as a central tumor suppressive complex in pancreatic cancer". Proceedings of the National Academy of Sciences of the United States of America. 109 (5): E252-9. doi:10.1073/pnas.1114817109. PMC 3277150. PMID 22233809.
  20. ^ a b Varela I, Tarpey P, Raine K, Huang D, Ong CK, Stephens P, et al. (January 2011). "Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma". Nature. 469 (7331): 539–42. Bibcode:2011Natur.469..539V. doi:10.1038/nature09639. PMC 3030920. PMID 21248752.
  21. ^ Mathur R, Alver BH, San Roman AK, Wilson BG, Wang X, Agoston AT, et al. (February 2017). "ARID1A loss impairs enhancer-mediated gene regulation and drives colon cancer in mice". Nature Genetics. 49 (2): 296–302. doi:10.1038/ng.3744. PMC 5285448. PMID 27941798.
  22. ^ Isakoff MS, Sansam CG, Tamayo P, Subramanian A, Evans JA, Fillmore CM, et al. (December 2005). "Inactivation of the Snf5 tumor suppressor stimulates cell cycle progression and cooperates with p53 loss in oncogenic transformation". Proceedings of the National Academy of Sciences of the United States of America. 102 (49): 17745–50. Bibcode:2005PNAS..10217745I. doi:10.1073/pnas.0509014102. PMC 1308926. PMID 16301525.
  23. ^ a b Hodges HC, Stanton BZ, Cermakova K, Chang CY, Miller EL, Kirkland JG, et al. (January 2018). "Dominant-negative SMARCA4 mutants alter the accessibility landscape of tissue-unrestricted enhancers". Nature Structural & Molecular Biology. 25 (1): 61–72. doi:10.1038/s41594-017-0007-3. PMC 5909405. PMID 29323272.
  24. ^ Muchardt C, Yaniv M (May 2001). "When the SWI/SNF complex remodels...the cell cycle". Oncogene. 20 (24): 3067–75. doi:10.1038/sj.onc.1204331. PMID 11420722.
  25. ^ Decristofaro MF, Betz BL, Rorie CJ, Reisman DN, Wang W, Weissman BE (January 2001). "Characterization of SWI/SNF protein expression in human breast cancer cell lines and other malignancies". Journal of Cellular Physiology. 186 (1): 136–45. doi:10.1002/1097-4652(200101)186:1<136::aid-jcp1010>3.0.co;2-4. PMID 11147808.
  26. ^ Shain AH, Pollack JR (2013). "The spectrum of SWI/SNF mutations, ubiquitous in human cancers". PLOS ONE. 8 (1): e55119. Bibcode:2013PLoSO...855119S. doi:10.1371/journal.pone.0055119. PMC 3552954. PMID 23355908.
  27. ^ Asturias FJ, Chung WH, Kornberg RD, Lorch Y (October 2002). "Structural analysis of the RSC chromatin-remodeling complex". Proceedings of the National Academy of Sciences of the United States of America. 99 (21): 13477–80. Bibcode:2002PNAS...9913477A. doi:10.1073/pnas.162504299. PMC 129698. PMID 12368485.
  28. ^ Leschziner AE, Saha A, Wittmeyer J, Zhang Y, Bustamante C, Cairns BR, Nogales E (March 2007). "Conformational flexibility in the chromatin remodeler RSC observed by electron microscopy and the orthogonal tilt reconstruction method". Proceedings of the National Academy of Sciences of the United States of America. 104 (12): 4913–8. Bibcode:2007PNAS..104.4913L. doi:10.1073/pnas.0700706104. PMC 1820885. PMID 17360331.
  29. ^ Smith CL, Horowitz-Scherer R, Flanagan JF, Woodcock CL, Peterson CL (February 2003). "Structural analysis of the yeast SWI/SNF chromatin remodeling complex". Nature Structural Biology. 10 (2): 141–5. doi:10.1038/nsb888. PMID 12524530. S2CID 3140088.
  30. ^ Chaban Y, Ezeokonkwo C, Chung WH, Zhang F, Kornberg RD, Maier-Davis B, Lorch Y, Asturias FJ (December 2008). "Structure of a RSC-nucleosome complex and insights into chromatin remodeling". Nature Structural & Molecular Biology. 15 (12): 1272–7. doi:10.1038/nsmb.1524. PMC 2659406. PMID 19029894.
  31. ^ Liu X, Li M, Xia X, Li X, Chen Z (April 2017). "Mechanism of chromatin remodelling revealed by the Snf2-nucleosome structure". Nature. 544 (7651): 440–445. Bibcode:2017Natur.544..440L. doi:10.1038/nature22036. PMID 28424519.
  32. ^ Yan L, Xie S, Du Y, Qian C (June 2017). "Structural Insights into BAF47 and BAF155 Complex Formation". Journal of Molecular Biology. 429 (11): 1650–1660. doi:10.1016/j.jmb.2017.04.008. PMID 28438634.
  33. ^ Bennett-Lovsey R, Hart SE, Shirai H, Mizuguchi K (April 2002). "The SWIB and the MDM2 domains are homologous and share a common fold". Bioinformatics. 18 (4): 626–30. doi:10.1093/bioinformatics/18.4.626. PMID 12016060.
  34. ^ a b c Decristofaro MF, Betz BL, Rorie CJ, Reisman DN, Wang W, Weissman BE (January 2001). "Characterization of SWI/SNF protein expression in human breast cancer cell lines and other malignancies". Journal of Cellular Physiology. 186 (1): 136–45. doi:10.1002/1097-4652(200101)186:1<136::AID-JCP1010>3.0.CO;2-4. PMID 11147808.
  35. ^ "Table 1 The different components in the yeast, Drosophila and mammalian SWI/SNF complex". Oncogene Including Oncogene Reviews. ISSN 1476-5594.
  36. ^ Collingwood TN, Urnov FD, Wolffe AP (December 1999). "Nuclear receptors: coactivators, corepressors and chromatin remodeling in the control of transcription". Journal of Molecular Endocrinology. 23 (3): 255–75. doi:10.1677/jme.0.0230255. PMID 10601972.

External links

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

SNF2-related domain Provide feedback

This domain is found in proteins involved in a variety of processes including transcription regulation (e.g., SNF2, STH1, brahma, MOT1), DNA repair (e.g., ERCC6, RAD16, RAD5), DNA recombination (e.g., RAD54), and chromatin unwinding (e.g., ISWI) as well as a variety of other proteins with little functional information (e.g., lodestar, ETL1)[1,2,3]. SNF2 functions as the ATPase component of the SNF2/SWI multisubunit complex, which utilises energy derived from ATP hydrolysis to disrupt histone-DNA interactions, resulting in the increased accessibility of DNA to transcription factors.

Literature references

  1. Eisen JA, Sweder KS, Hanawalt PC;, Nucleic Acids Res. 1995;23:2715-2723.: Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions. PUBMED:7651832 EPMC:7651832

  2. Linder B, Cabot RA, Schwickert T, Rupp RA;, Gene. 2004;326:59-66.: The SNF2 domain protein family in higher vertebrates displays dynamic expression patterns in Xenopus laevis embryos. PUBMED:14729263 EPMC:14729263

  3. Rowbotham SP, Barki L, Neves-Costa A, Santos F, Dean W, Hawkes N, Choudhary P, Will WR, Webster J, Oxley D, Green CM, Varga-Weisz P, Mermoud JE;, Mol Cell. 2011;42:285-296.: Maintenance of silent chromatin through replication requires SWI/SNF-like chromatin remodeler SMARCAD1. PUBMED:21549307 EPMC:21549307


Internal database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR000330

This domain is found in proteins involved in a variety of processes including transcription regulation (e.g., SNF2, STH1, brahma, MOT1), DNA repair (e.g., ERCC6, RAD16, RAD5), DNA recombination (e.g., RAD54), and chromatin unwinding (e.g., ISWI) as well as a variety of other proteins with little functional information (e.g., lodestar, ETL1) [ PUBMED:7651832 , PUBMED:14729263 , PUBMED:21549307 ]. SNF2 functions as the ATPase component of the SNF2/SWI multisubunit complex, which utilises energy derived from ATP hydrolysis to disrupt histone-DNA interactions, resulting in the increased accessibility of DNA to transcription factors [ PUBMED:16935875 ].

Proteins that contain this domain appear to be distantly related to the DEAX box helicases.

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan P-loop_NTPase (CL0023), which has the following description:

AAA family proteins often perform chaperone-like functions that assist in the assembly, operation, or disassembly of protein complexes [2].

The clan contains the following 245 members:

6PF2K AAA AAA-ATPase_like AAA_10 AAA_11 AAA_12 AAA_13 AAA_14 AAA_15 AAA_16 AAA_17 AAA_18 AAA_19 AAA_2 AAA_21 AAA_22 AAA_23 AAA_24 AAA_25 AAA_26 AAA_27 AAA_28 AAA_29 AAA_3 AAA_30 AAA_31 AAA_32 AAA_33 AAA_34 AAA_35 AAA_5 AAA_6 AAA_7 AAA_8 AAA_9 AAA_PrkA ABC_ATPase ABC_tran ABC_tran_Xtn Adeno_IVa2 Adenylsucc_synt ADK AFG1_ATPase AIG1 APS_kinase Arf ArsA_ATPase ATP-synt_ab ATP_bind_1 ATP_bind_2 ATPase ATPase_2 Bac_DnaA BCA_ABC_TP_C Beta-Casp bpMoxR BrxC_BrxD BrxL_ATPase Cas_Csn2 Cas_St_Csn2 CbiA CBP_BcsQ CDC73_C CENP-M CFTR_R CLP1_P CMS1 CoaE CobA_CobO_BtuR CobU cobW CPT CSM2 CTP_synth_N Cytidylate_kin Cytidylate_kin2 DAP3 DEAD DEAD_2 divDNAB DLIC DNA_pack_C DNA_pack_N DNA_pol3_delta DNA_pol3_delta2 DnaB_C dNK DO-GTPase1 DO-GTPase2 DUF1611 DUF2075 DUF2326 DUF2478 DUF257 DUF2813 DUF3584 DUF463 DUF4914 DUF5906 DUF6079 DUF815 DUF835 DUF87 DUF927 Dynamin_N Dynein_heavy Elong_Iki1 ELP6 ERCC3_RAD25_C Exonuc_V_gamma FeoB_N Fer4_NifH Flavi_DEAD FTHFS FtsK_SpoIIIE G-alpha Gal-3-0_sulfotr GBP GBP_C GpA_ATPase GpA_nuclease GTP_EFTU Gtr1_RagA Guanylate_kin GvpD_P-loop HDA2-3 Helicase_C Helicase_C_2 Helicase_C_4 Helicase_RecD HerA_C Herpes_Helicase Herpes_ori_bp Herpes_TK HydF_dimer HydF_tetramer Hydin_ADK IIGP IPPT IPT iSTAND IstB_IS21 KAP_NTPase KdpD Kinase-PPPase Kinesin KTI12 LAP1_C LpxK MCM MeaB MEDS Mg_chelatase Microtub_bd MipZ MMR_HSR1 MMR_HSR1_C MobB MukB Mur_ligase_M MutS_V Myosin_head NACHT NAT_N NB-ARC NOG1 NTPase_1 NTPase_P4 ORC3_N P-loop_TraG ParA Parvo_NS1 PAXNEB PduV-EutP PhoH PIF1 Ploopntkinase1 Ploopntkinase2 Ploopntkinase3 Podovirus_Gp16 Polyoma_lg_T_C Pox_A32 PPK2 PPV_E1_C PRK PSY3 Rad17 Rad51 Ras RecA ResIII RHD3_GTPase RhoGAP_pG1_pG2 RHSP RNA12 RNA_helicase Roc RsgA_GTPase RuvB_N SbcC_Walker_B SecA_DEAD Senescence Septin Sigma54_activ_2 Sigma54_activat SKI SMC_N SNF2-rel_dom SpoIVA_ATPase Spore_III_AA SRP54 SRPRB SulA Sulfotransfer_1 Sulfotransfer_2 Sulfotransfer_3 Sulfotransfer_4 Sulfotransfer_5 Sulphotransf SWI2_SNF2 T2SSE T4SS-DNA_transf TerL_ATPase Terminase_3 Terminase_6N Thymidylate_kin TIP49 TK TmcA_N TniB Torsin TraG-D_C tRNA_lig_kinase TrwB_AAD_bind TsaE UvrB UvrD-helicase UvrD_C UvrD_C_2 Viral_helicase1 VirC1 VirE YqeC Zeta_toxin Zot

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets and the UniProtKB sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(19)
Full
(69218)
Representative proteomes UniProt
(152775)
RP15
(12127)
RP35
(30716)
RP55
(56218)
RP75
(80603)
Jalview View  View  View  View  View  View  View 
HTML View             
PP/heatmap 1            

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(19)
Full
(69218)
Representative proteomes UniProt
(152775)
RP15
(12127)
RP35
(30716)
RP55
(56218)
RP75
(80603)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(19)
Full
(69218)
Representative proteomes UniProt
(152775)
RP15
(12127)
RP35
(30716)
RP55
(56218)
RP75
(80603)
Raw Stockholm Download   Download   Download   Download   Download   Download    
Gzipped Download   Download   Download   Download   Download   Download    

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Published_alignment
Previous IDs: SNF2_N;
Type: Domain
Sequence Ontology: SO:0000417
Author: Sonnhammer ELL
Number in seed: 19
Number in full: 69218
Average length of the domain: 295.60 aa
Average identity of full alignment: 24 %
Average coverage of the sequence by the domain: 23.77 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null --hand HMM SEED
search method: hmmsearch -Z 61295632 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 23.9 23.9
Trusted cut-off 23.9 23.9
Noise cut-off 23.8 23.8
Model length: 318
Family (HMM) version: 26
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Hide

Weight segments by...


Change the size of the sunburst

Small
Large

Colour assignments

Archea Archea Eukaryota Eukaryota
Bacteria Bacteria Other sequences Other sequences
Viruses Viruses Unclassified Unclassified
Viroids Viroids Unclassified sequence Unclassified sequence

Selections

Align selected sequences to HMM

Generate a FASTA-format file

Clear selection

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the SNF2-rel_dom domain has been found. There are 79 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein sequence.

Loading structure mapping...

AlphaFold Structure Predictions

The list of proteins below match this family and have AlphaFold predicted structures. Click on the protein accession to view the predicted structure.

Protein Predicted structure External Information
A0A0G2JTU1 View 3D Structure Click here
A0A0G2JVH5 View 3D Structure Click here
A0A0G2JXQ2 View 3D Structure Click here
A0A0G2K8A6 View 3D Structure Click here
A0A0G2KA92 View 3D Structure Click here
A0A0N7KJZ6 View 3D Structure Click here
A0A0P0VBB9 View 3D Structure Click here
A0A0P0VMH4 View 3D Structure Click here
A0A0P0VTG8 View 3D Structure Click here
A0A0P0WGX7 View 3D Structure Click here
A0A0P0WRQ5 View 3D Structure Click here
A0A0P0X5H1 View 3D Structure Click here
A0A0P0X8K8 View 3D Structure Click here
A0A0P0X9K4 View 3D Structure Click here
A0A0P0XDE3 View 3D Structure Click here
A0A0P0XE56 View 3D Structure Click here
A0A0P0XUY0 View 3D Structure Click here
A0A0P0XXB0 View 3D Structure Click here
A0A0R0E9M0 View 3D Structure Click here
A0A0R0EFC2 View 3D Structure Click here
A0A0R0EUX1 View 3D Structure Click here
A0A0R0F808 View 3D Structure Click here
A0A0R0FWK1 View 3D Structure Click here
A0A0R0GZU6 View 3D Structure Click here
A0A0R0HML7 View 3D Structure Click here
A0A0R0HUE5 View 3D Structure Click here
A0A0R0II66 View 3D Structure Click here
A0A0R0IJ30 View 3D Structure Click here
A0A0R0IWG1 View 3D Structure Click here
A0A0R0J562 View 3D Structure Click here
A0A0R0JY28 View 3D Structure Click here
A0A0R0K8G3 View 3D Structure Click here
A0A0R0KY87 View 3D Structure Click here
A0A0R0LBQ6 View 3D Structure Click here
A0A0R4IAE4 View 3D Structure Click here
A0A0R4IFG3 View 3D Structure Click here
A0A0R4IJ25 View 3D Structure Click here
A0A0R4IJ89 View 3D Structure Click here
A0A0R4IR86 View 3D Structure Click here
A0A0R4IS87 View 3D Structure Click here