Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
32  structures 4723  species 7  interactions 10957  sequences 41  architectures

Family: Sigma70_r3 (PF04539)

Summary: Sigma-70 region 3

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

The Pfam group coordinates the annotation of Pfam families in Wikipedia, but we have not yet assigned a Wikipedia article to this family. If you think that a particular Wikipedia article provides good annotation, please let us know.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Sigma-70 region 3 Provide feedback

Region 3 forms a discrete compact three helical domain within the sigma-factor. Region is not normally involved in the recognition of promoter DNA, but as some specific bacterial promoters containing an extended -10 promoter element, residues within region 3 play an important role. Region 3 primarily is involved in binding the core RNA polymerase in the holoenzyme [1].

Literature references

  1. Campbell EA, Muzzin O, Chlenov M, Sun JL, Olson CA, Weinman O, Trester-Zedlitz ML, Darst SA; , Mol Cell 2002;9:527-539.: Structure of the bacterial RNA polymerase promoter specificity sigma subunit. PUBMED:11931761 EPMC:11931761


External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR007624

The bacterial core RNA polymerase complex, which consists of five subunits, is sufficient for transcription elongation and termination but is unable to initiate transcription. Transcription initiation from promoter elements requires a sixth, dissociable subunit called a sigma factor, which reversibly associates with the core RNA polymerase complex to form a holoenzyme [PUBMED:3052291]. RNA polymerase recruits alternative sigma factors as a means of switching on specific regulons. Most bacteria express a multiplicity of sigma factors. Two of these factors, sigma-70 (gene rpoD), generally known as the major or primary sigma factor, and sigma-54 (gene rpoN or ntrA) direct the transcription of a wide variety of genes. The other sigma factors, known as alternative sigma factors, are required for the transcription of specific subsets of genes.

With regard to sequence similarity, sigma factors can be grouped into two classes, the sigma-54 and sigma-70 families. Sequence alignments of the sigma70 family members reveal four conserved regions that can be further divided into subregions eg. sub-region 2.2, which may be involved in the binding of the sigma factor to the core RNA polymerase; and sub-region 4.2, which seems to harbor a DNA-binding 'helix-turn-helix' motif involved in binding the conserved -35 region of promoters recognised by the major sigma factors [PUBMED:3092189, PUBMED:1597408].

Region 3 forms a discrete compact three helical domain within the sigma-factor. Region is not normally involved in the recognition of promoter DNA, but in some specific bacterial promoters containing an extended -10 promoter element, residues within region 3 play an important role. Region 3 primarily is involved in binding the core RNA polymerase in the holoenzyme [PUBMED:11931761].

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan HTH (CL0123), which has the following description:

This family contains a diverse range of mostly DNA-binding domains that contain a helix-turn-helix motif.

The clan contains the following 202 members:

AphA_like Arg_repressor B-block_TFIIIC Bac_DnaA_C BetR Bot1p BrkDBD CENP-B_N Cro Crp DDRGK Dimerisation DUF1133 DUF1153 DUF1323 DUF134 DUF1441 DUF1492 DUF1495 DUF1670 DUF1804 DUF1836 DUF1870 DUF2089 DUF2250 DUF2316 DUF3116 DUF3853 DUF387 DUF3908 DUF4095 DUF4364 DUF739 DUF742 DUF977 E2F_TDP ELK Ets Exc F-112 FaeA Fe_dep_repr_C Fe_dep_repress FeoC Ftsk_gamma FUR GcrA GerE GntR HARE-HTH HemN_C Homeobox Homeobox_KN Homez HrcA_DNA-bdg HSF_DNA-bind HTH_1 HTH_10 HTH_11 HTH_12 HTH_13 HTH_15 HTH_16 HTH_17 HTH_18 HTH_19 HTH_20 HTH_21 HTH_22 HTH_23 HTH_24 HTH_25 HTH_26 HTH_27 HTH_28 HTH_29 HTH_3 HTH_30 HTH_31 HTH_32 HTH_33 HTH_34 HTH_35 HTH_36 HTH_37 HTH_38 HTH_39 HTH_40 HTH_41 HTH_42 HTH_43 HTH_45 HTH_5 HTH_6 HTH_7 HTH_8 HTH_9 HTH_AraC HTH_AsnC-type HTH_CodY HTH_Crp_2 HTH_DeoR HTH_IclR HTH_Mga HTH_OrfB_IS605 HTH_psq HTH_Tnp_1 HTH_Tnp_1_2 HTH_Tnp_4 HTH_Tnp_IS1 HTH_Tnp_IS630 HTH_Tnp_ISL3 HTH_Tnp_Mu_1 HTH_Tnp_Mu_2 HTH_Tnp_Tc3_1 HTH_Tnp_Tc3_2 HTH_Tnp_Tc5 HTH_WhiA HxlR IF2_N KorB LacI LexA_DNA_bind LZ_Tnp_IS481 MADF_DNA_bdg MarR MarR_2 Med9 MerR MerR-DNA-bind MerR_1 MerR_2 Mga Mnd1 Mor MotA_activ MRP-L20 Myb_DNA-bind_2 Myb_DNA-bind_3 Myb_DNA-bind_4 Myb_DNA-bind_5 Myb_DNA-bind_6 Myb_DNA-binding Neugrin NUMOD1 OST-HTH P22_Cro PaaX PadR PAX PCI PCI_Csn8 Penicillinase_R Phage_AlpA Phage_antitermQ Phage_CI_repr Phage_CII Phage_rep_org_N Phage_terminase Pou Pox_D5 PuR_N Put_DNA-bind_N Rap1-DNA-bind Rep_3 RepA_C RepA_N RepC RepL Replic_Relax RFX_DNA_binding Ribosomal_S25 Rio2_N RNA_pol_Rpc34 RP-C RPA RPA_C RQC Rrf2 RTP SAC3_GANP SgrR_N Sigma54_CBD Sigma54_DBD Sigma70_ECF Sigma70_r2 Sigma70_r3 Sigma70_r4 Sigma70_r4_2 SpoIIID Sulfolobus_pRN TBPIP Terminase_5 TetR_N TFIIE_alpha Tn916-Xis Trans_reg_C TrfA TrmB Trp_repressor UPF0122 z-alpha

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(82)
Full
(10957)
Representative proteomes NCBI
(7548)
Meta
(3445)
RP15
(876)
RP35
(1740)
RP55
(2204)
RP75
(2549)
Jalview View  View  View  View  View  View  View  View 
HTML View    View  View  View  View     
PP/heatmap 1   View  View  View  View     
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(82)
Full
(10957)
Representative proteomes NCBI
(7548)
Meta
(3445)
RP15
(876)
RP35
(1740)
RP55
(2204)
RP75
(2549)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(82)
Full
(10957)
Representative proteomes NCBI
(7548)
Meta
(3445)
RP15
(876)
RP35
(1740)
RP55
(2204)
RP75
(2549)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: manual
Previous IDs: sigma70_r3;
Type: Family
Author: Finn RD
Number in seed: 82
Number in full: 10957
Average length of the domain: 76.80 aa
Average identity of full alignment: 28 %
Average coverage of the sequence by the domain: 20.25 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 23193494 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 25.3 25.3
Trusted cut-off 25.3 25.3
Noise cut-off 25.2 25.1
Model length: 78
Family (HMM) version: 11
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Show

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Interactions

There are 7 interactions for this family. More...

RNA_pol_Rpb1_1 Sigma70_r2 RNA_pol_Rpb2_1 RNA_pol_Rpb2_7 RNA_pol_Rpb2_6 RNA_pol_Rpb1_2 Sigma70_r4

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the Sigma70_r3 domain has been found. There are 32 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...