Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
0  structures 1035  species 0  interactions 1403  sequences 13  architectures

Family: SpoIIP (PF07454)

Summary: Stage II sporulation protein P (SpoIIP)

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

The Pfam group coordinates the annotation of Pfam families in Wikipedia, but we have not yet assigned a Wikipedia article to this family. If you think that a particular Wikipedia article provides good annotation, please let us know.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Stage II sporulation protein P (SpoIIP) Provide feedback

This family contains the bacterial stage II sporulation protein P (SpoIIP) (approximately 350 residues long). It has been shown that a block in polar cytokinesis in Bacillus subtilis is mediated partly by transcription of spoIID, spoIIM and spoIIP. This inhibition of polar division is involved in the locking in of asymmetry after the formation of a polar septum during sporulation [1]. Engulfment in Bacillus subtilis is mediated by two complementary systems: the first includes the proteins SpoIID, SpoIIM and SpoIIP (DMP) which carry out the engulfment, and the second includes the SpoIIQ-SpoIIIAGH (Q-AH) zipper, that recruits other proteins to the septum in a second-phase of the engulfment. The course of events follows as the incorporation firstly of SpoIIB into the septum during division to serve directly or indirectly as a landmark for localising SpoIIM and then SpoIIP and SpoIID to the septum. SpoIIP and SpoIID interact together to form part of the DMP complex [3]. SpoIIP itself has been identified as an autolysin with peptidoglycan hydrolase activity [2].

Literature references

  1. Pogliano J, Osborne N, Sharp MD, Abanes-De Mello A, Perez A, Sun YL, Pogliano K; , Mol Microbiol. 1999;31:1149-1159.: A vital stain for studying membrane dynamics in bacteria: a novel mechanism controlling septation during Bacillus subtilis sporulation. PUBMED:10096082 EPMC:10096082

  2. Chastanet A, Losick R; , Mol Microbiol. 2007;64:139-152.: Engulfment during sporulation in Bacillus subtilis is governed by a multi-protein complex containing tandemly acting autolysins. PUBMED:17376078 EPMC:17376078

  3. Aung S, Shum J, Abanes-De Mello A, Broder DH, Fredlund-Gutierrez J, Chiba S, Pogliano K; , Mol Microbiol. 2007;65:1534-1546.: Dual localization pathways for the engulfment proteins during Bacillus subtilis sporulation. PUBMED:17824930 EPMC:17824930

Internal database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR010897

This family contains the bacterial stage II sporulation protein P (SpoIIP) (approximately 350 residues long). It has been shown that a block in polar cytokinesis in Bacillus subtilis is mediated partly by transcription of spoIID, spoIIM and spoIIP. This inhibition of polar division is involved in the locking in of asymmetry after the formation of a polar septum during sporulation [ PUBMED:11886548 ].

SpoIIP is one of the three genes (spoIID, spoIIM and spoIIP, [ PUBMED:8501064 , PUBMED:7836306 , PUBMED:3011962 ]), under the control of sigma E, that have been shown to be essential for the engulfment of the forespore by the mother cell. Their products are involved in degradation of the septal peptidoglycan and mutations in spoIID, spoIIM or spoIIP block sporulation at morphological stage II, prior to the stage of engulfment. These three genes are absolutely conserved (sometimes even duplicated) in all endospore formers [ PUBMED:12662922 ].

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan Peptidase_MH (CL0035), which has the following description:

This clan contains peptidases belonging to MEROPS clan MH, MC and MF. We also include Nicastrin that is part of the gamma secretase complex and not known to be a peptidase.

The clan contains the following 17 members:

Amidase_3 AstE_AspA DUF2817 DUF4910 FGase Gamma_PGA_hydro Glycolytic Ncstrn_small Nicastrin Peptidase_M14 Peptidase_M17 Peptidase_M18 Peptidase_M20 Peptidase_M28 Peptidase_M42 Peptidase_M99 SpoIIP


We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets and the UniProtKB sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

Representative proteomes UniProt
Jalview View  View  View  View  View  View  View 
HTML View  View           
PP/heatmap 1 View           

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

Representative proteomes UniProt

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

Representative proteomes UniProt
Raw Stockholm Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...


This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Pfam-B_21650 (release 10.0)
Previous IDs: none
Type: Family
Sequence Ontology: SO:0100021
Author: Vella Briffa B
Number in seed: 58
Number in full: 1403
Average length of the domain: 277.20 aa
Average identity of full alignment: 25 %
Average coverage of the sequence by the domain: 73.76 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 61295632 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 24.4 24.4
Trusted cut-off 25.6 25.4
Noise cut-off 24.3 24.3
Model length: 264
Family (HMM) version: 14
Download: download the raw HMM for this family

Species distribution

Sunburst controls


Weight segments by...

Change the size of the sunburst


Colour assignments

Archea Archea Eukaryota Eukaryota
Bacteria Bacteria Other sequences Other sequences
Viruses Viruses Unclassified Unclassified
Viroids Viroids Unclassified sequence Unclassified sequence


Align selected sequences to HMM

Generate a FASTA-format file

Clear selection

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls


The tree shows the occurrence of this domain across different species. More...


Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

AlphaFold Structure Predictions

The list of proteins below match this family and have AlphaFold predicted structures. Click on the protein accession to view the predicted structure.

Protein Predicted structure External Information
Q55ES5 View 3D Structure Click here

trRosetta Structure

The structural model below was generated by the Baker group with the trRosetta software using the Pfam UniProt multiple sequence alignment.

The InterPro website shows the contact map for the Pfam SEED alignment. Hovering or clicking on a contact position will highlight its connection to other residues in the alignment, as well as on the 3D structure.

Improved protein structure prediction using predicted inter-residue orientations. Jianyi Yang, Ivan Anishchenko, Hahnbeom Park, Zhenling Peng, Sergey Ovchinnikov, David Baker Proceedings of the National Academy of Sciences Jan 2020, 117 (3) 1496-1503; DOI: 10.1073/pnas.1914677117;