Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
0  structures 147  species 0  interactions 554  sequences 15  architectures

Family: TRP (PF06011)

Summary: Transient receptor potential (TRP) ion channel

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Transient receptor potential channel". More...

Transient receptor potential channel Edit Wikipedia article

Transient receptor potential (TRP) ion channel
Identifiers
Symbol TRP
Pfam PF06011
InterPro IPR010308
OPM superfamily 8
OPM protein 3j5p

Transient receptor potential channels (TRP channels) are a group of ion channels located mostly on the plasma membrane of numerous human and animal cell types. There are about 28 TRP channels that share some structural similarity to each other.[1] These are grouped into two broad groups: Group 1 includes TRPC ( "C" for canonical), TRPV ("V" for vanilloid), TRPM ("M" for melastatin), TRPN, and TRPA. In group 2, there are TRPP ("P" for polycystic) and TRPML ("ML" for mucolipin). Many of these channels mediate a variety of sensations like the sensations of pain, hotness, warmth or coldness, different kinds of tastes, pressure, and vision. In the body, some TRP channels are thought to behave like microscopic thermometers and used in animals to sense hot or cold.[2] Some TRP channels are activated by molecules found in spices like garlic (allicin), chilli pepper (capsaicin), wasabi (allyl isothiocyanate); others are activated by menthol, camphor, peppermint, and cooling agents; yet others are activated by molecules found in cannabis (i.e., THC, CBD and CBN). Some act as sensors of osmotic pressure, volume, stretch, and vibration.

These ion channels are relatively non-selectively permeable to cations, including sodium, calcium and magnesium. TRP channels were initially discovered in trp-mutant strain of the fruit fly Drosophila. Later, TRP channels were found in vertebrates where they are ubiquitously expressed in many cell types and tissues. Most TRP channels are composed of 6 membrane-spanning helices with intracellular N- and C-termini. Mammalian TRP channels are activated and regulated by a wide variety of stimuli and are expressed throughout the body.

Sub-families

They are encoded by at least 33 channel subunit genes divided into seven sub-families:

TRP-like channels in insect vision

Figure 1. Light-activated TRPL channels in Periplaneta americana photoreceptors. A, a typical current through TRPL channels was evoked by a 4-s pulse of bright light (horizontal bar). B, a photoreceptor membrane voltage response to the light-induced activation of TRPL channels, data from the same cell are shown

The trp-mutant fruit flies, which lack a functional copy of trp gene, are characterized by a transient response to light, unlike wild-type flies that demonstrate a sustained photoreceptor cell activity in response to light.[3] A distantly related isoform of TRP channel, TRP-like channel (TRPL), was later identified in Drosophila photoreceptors, where it is expressed at approximately 10- to 20-fold lower levels than TRP protein. A mutant fly, trpl, was subsequently isolated. Apart from structural differences, the TRP and TRPL channels differ in cation permeability and pharmacological properties.

TRP/TRPL channels are solely responsible for depolarization of insect photoreceptor plasma membrane in response to light. When these channels open, they allow sodium and calcium to enter the cell down the concentration gradient, which depolarizes the membrane. Variations in light intensity affect the total number of open TRP/TRPL channels, and, therefore, the degree of membrane depolarization. These graded voltage responses propagate to photoreceptor synapses with second-order retinal neurons and further to the brain.

It is important to note that the mechanism of insect photoreception is dramatically different from that in mammals. Excitation of rhodopsin in mammalian photoreceptors leads to the hyperpolarization of the receptor membrane but not to depolarization as in the insect eye. In Drosophila and, it is presumed, other insects, a phospholipase C (PLC)-mediated signaling cascade links photoexcitation of rhodopsin to the opening of the TRP/TRPL channels. Although numerous activators of these channels such as phosphatidylinositol-4,5-bisphosphate (PIP2) and polyunsaturated fatty acids (PUFAs) were known for years, a key factor mediating chemical coupling between PLC and TRP/TRPL channels remained a mystery until recently. It was found that breakdown of a lipid product of PLC cascade, diacylglycerol (DAG), by the enzyme Diacylglycerol lipase, generates PUFAs that can activate TRP channels, thus initiating membrane depolarization in response to light.[4] This mechanism of TRP channel activation may be well-preserved among other cell types where these channels perform various functions.

History of Drosophila TRP channels

The original TRP-mutant in Drosophila was first described by Cosens and Manning in 1969 as a "a mutant strain of D. melanogaster which, though behaving phototactically positive in a T-maze under low ambient light, is visually impaired and behaves as though blind". It also showed an abnormal ERG response to light[3] and it was investigated subsequently by Baruch Minke, a post-doc in the group of William Pak, and named TRP according to its behavior in the ERG.[3] The identity of the mutated protein was unknown until it was cloned by Craig Montell, a post-doctoral researcher in Gerald Rubin's research group, in 1989, who noted its predicted structural relationship to channels known at the time [5] and Roger Hardie and Baruch Minke who provided evidence in 1992 that it is an ion channel that opens in response to light stimulation.[6] The TRPL channel was cloned and characterized in 1992 by the research group of Leonard Kelly.[7]

References

  1. ^ Islam MS, ed. (January 2011). Transient Receptor Potential Channels. Advances in Experimental Medicine and Biology 704. Berlin: Springer. p. 700. ISBN 978-94-007-0264-6. 
  2. ^ Vriens, J; Nilius, B; Voets, T (2014). "Peripheral thermosensation in mammals". Nature Reviews Neuroscience 15 (9): 573–89. doi:10.1038/nrn3784. PMID 25053448.  edit
  3. ^ a b c Cosens DJ, Manning A (1969). "Abnormal electroretinogram from a Drosophila mutant". Nature 224 (5216): 285–287. doi:10.1038/224285a0. PMID 5344615. 
  4. ^ Leung HT, Tseng-Crank J, Kim E, Mahapatra C, Shino S, Zhou Y, An L, Doerge RW, Pak WL. (Jun 26, 2008). "DAG lipase activity is necessary for TRP channel regulation in Drosophila photoreceptors". Neuron 6 (58): 884–896. doi:10.1016/j.neuron.2008.05.001. PMC 2459341. PMID 18579079. 
  5. ^ Montell C, Rubin GM (April 1989). "Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction". Neuron 2 (4): 1313–23. doi:10.1016/0896-6273(89)90069-X. PMID 2516726. 
  6. ^ Hardie RC, Minke B (April 1992). "The trp gene is essential for a light-activated Ca2+ channel in Drosophila photoreceptors". Neuron 8 (4): 643–51. doi:10.1016/0896-6273(92)90086-S. PMID 1314617. 
  7. ^ Phillips AM, Bull A, Kelly LE (April 1992). "Identification of a Drosophila gene encoding a calmodulin-binding protein with homology to the trp phototransduction gene". Neuron 8 (4): 631–42. doi:10.1016/0896-6273(92)90085-R. PMID 1314616. 

External links

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Transient receptor potential (TRP) ion channel Provide feedback

This family of proteins are transient receptor potential (TRP) ion channels. They are essential for cellular viability and are involved in cell growth and cell wall synthesis [1]. The genes for these proteins are homologous to polycystic kidney disease related ion channel genes [1].

Literature references

  1. Palmer CP, Aydar E, Djamgoz MB; , Biochem J 2004; [Epub ahead of print]: A microbial TRP-like polycystic kidney disease related ion channel gene. PUBMED:15537393 EPMC:15537393


External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR010308

This entry represents a family of transient receptor potential channel-like proteins. The family includes several fungal flavin carrier proteins, which may be responsible for the transport of FAD into the endoplasmatic reticulum lumen, where it is required for oxidative protein folding [PUBMED:16717099]. The family also includes the TRP-like ion channel pkd2, which acts as a key signaling component in the regulation of cell shape and cell wall synthesis through interaction with GTPase Rho1 [PUBMED:15537393].

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(75)
Full
(554)
Representative proteomes NCBI
(554)
Meta
(9)
RP15
(105)
RP35
(229)
RP55
(366)
RP75
(432)
Jalview View  View  View  View  View  View  View  View 
HTML View  View  View  View  View  View     
PP/heatmap 1 View  View  View  View  View     
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(75)
Full
(554)
Representative proteomes NCBI
(554)
Meta
(9)
RP15
(105)
RP35
(229)
RP55
(366)
RP75
(432)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(75)
Full
(554)
Representative proteomes NCBI
(554)
Meta
(9)
RP15
(105)
RP35
(229)
RP55
(366)
RP75
(432)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Pfam-B_5564 (release 9.0)
Previous IDs: DUF907;
Type: Family
Author: Moxon SJ, Mistry J, Wood V
Number in seed: 75
Number in full: 554
Average length of the domain: 419.00 aa
Average identity of full alignment: 23 %
Average coverage of the sequence by the domain: 50.82 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 23193494 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 28.5 28.5
Trusted cut-off 28.6 28.5
Noise cut-off 28.3 28.4
Model length: 438
Family (HMM) version: 7
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Show

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.