Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
250  structures 229  species 2  interactions 1389  sequences 15  architectures

Family: Transferrin (PF00405)

Summary: Transferrin

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Transferrin". More...

Transferrin Edit Wikipedia article

Protein TF PDB 1a8e.png
PDB rendering based on 1a8e.
Available structures
PDB Ortholog search: PDBe, RCSB
Symbols TF ; PRO1557; PRO2086; TFQTL1
External IDs OMIM190000 MGI98821 HomoloGene68153 ChEMBL: 4865 GeneCards: TF Gene
RNA expression pattern
PBB GE TF 203400 s at tn.png
PBB GE TF 214063 s at tn.png
More reference expression data
Species Human Mouse
Entrez 7018 22041
Ensembl ENSG00000091513 ENSMUSG00000032554
UniProt P02787 Q921I1
RefSeq (mRNA) NM_001063 NM_133977
RefSeq (protein) NP_001054 NP_598738
Location (UCSC) Chr 3:
133.46 – 133.5 Mb
Chr 9:
103.2 – 103.23 Mb
PubMed search [1] [2]
Symbol Transferrin
Pfam PF00405
InterPro IPR001156
SCOP 1lcf
OPM superfamily 161
OPM protein 1lfc

Transferrins are iron-binding blood plasma glycoproteins that control the level of free iron in biological fluids.[1] Human transferrin is encoded by the TF gene.[2]

Transferrin glycoproteins bind iron very tightly, but reversibly. Although iron bound to transferrin is less than 0.1% (4 mg) of the total body iron, it is the most important iron pool, with the highest rate of turnover (25 mg/24 h). Transferrin has a molecular weight of around 80 KDa and contains two specific high-affinity Fe(III) binding sites. The affinity of transferrin for Fe(III) is extremely high (1023 M−1 at pH 7.4)[3] but decreases progressively with decreasing pH below neutrality.

When not bound to iron, it is known as "apotransferrin" (see also apoprotein).

Transport mechanism

When a transferrin protein loaded with iron encounters a transferrin receptor on the surface of a cell (e.g., to erythroid precursors in the bone marrow), it binds to it and, as a consequence, is transported into the cell in a vesicle by receptor-mediated endocytosis. The pH of the vesicle is reduced by hydrogen ion pumps (H+
) to about 5.5, causing transferrin to release its iron ions. The receptor (with its ligand, transferrin, bound) is then transported through the endocytic cycle back to the cell surface, ready for another round of iron uptake. Each transferrin molecule has the ability to carry two iron ions in the ferric form (Fe3+

The gene coding for transferrin in humans is located in chromosome band 3q21.[2]

Medical professionals may check serum transferrin level in iron deficiency, and in iron overload disorders such as hemochromatosis.


In humans, transferrin consists of a polypeptide chain containing 679 amino acids. The protein is composed of alpha helices and beta sheets to form two domains.[4] The N- and C- terminal sequences are represented by globular lobes and between the two lobes is an iron-binding site.

The amino acids which bind the iron ion to the transferrin are identical for both lobes; two tyrosines, one histidine, and one aspartic acid. For the iron ion to bind, an anion is required, preferably carbonate (CO2−

Transferrin also has a transferrin iron-bound receptor; it is a disulfide-linked homodimer.[5] In humans, each monomer consists of 760 amino acids. It enables ligand bonding to the transferrin, as each monomer can bind to one or two molecules of iron. Each monomer consists of three domains: the protease, the helical, and the apical domains. The shape of transferrin receptor resembles a butterfly-like complex, due to the three clearly shaped domains.[4]

Tissue distribution

The liver is the main site of transferrin synthesis, but other tissues and organs, such as the brain, also produce it. The main role of transferrin is to deliver iron from absorption centers in the duodenum and white blood cell macrophages to all tissues. Transferrin plays a key role where erythropoiesis and active cell division occur.[5] The receptor helps maintain iron homeostasis in the cells by controlling iron concentrations.[5]

Immune system

Transferrin is also associated with the innate immune system. It is found in the mucosa and binds iron, thus creating an environment low in free iron that impedes bacterial survival in a process called iron withholding. The level of transferrin decreases in inflammation.[8]

Role in disease

An increased plasma transferrin level is often seen in patients suffering from iron deficiency anemia.[5] A decreased plasma transferrin can occur in iron overload diseases and protein malnutrition. An absence of transferrin results from a rare genetic disorder known as atransferrinemia; a condition characterized by anemia and hemosiderosis in the heart and liver that leads to many complications, including heart failure.

Most recently, transferrin and its receptor have been shown to diminish tumour cells by using the receptor to attract antibodies.[5]

Other effects

The metal-binding properties of transferrin have a great influence on the biochemistry of plutonium in humans.

Carbohydrate deficient transferrin increases in the blood with heavy ethanol consumption and can be monitored via laboratory testing.[9]


A deficiency is associated with atransferrinemia.

Reference ranges

An example reference range for transferrin is 204–360 mg/dL.[10] Laboratory test results should always be interpreted using the reference range provided by the laboratory that performed the test.

Reference ranges for blood tests, comparing blood content of transferrin and other iron-related compounds (shown in brown and orange) with other constituents

A high transferrin level may indicate an iron deficiency anemia. Levels of serum iron and total iron binding capacity (TIBC) are used in conjunction with transferrin to specify any abnormality. See interpretation of TIBC.


Transferrin has been shown to interact with insulin-like growth factor 2[11] and IGFBP3.[12] Transcriptional regulation of transferrin is upregulated by retinoic acid.[13]

Related proteins

Members of the family include blood serotransferrin (or siderophilin, usually simply called transferrin); lactotransferrin (lactoferrin); milk transferrin; egg white ovotransferrin (conalbumin); and membrane-associated melanotransferrin.[14]

See also


  1. ^ Crichton RR, Charloteaux-Wauters M (1987). "Iron transport and storage". Eur. J. Biochem. 164 (3): 485–506. doi:10.1111/j.1432-1033.1987.tb11155.x. PMID 3032619. 
  2. ^ a b Yang F, Lum JB, McGill JR, Moore CM, Naylor SL, van Bragt PH, Baldwin WD, Bowman BH (May 1984). "Human transferrin: cDNA characterization and chromosomal localization". Proceedings of the National Academy of Sciences of the United States of America 81 (9): 2752–6. doi:10.1073/pnas.81.9.2752. PMC 345148. PMID 6585826. 
  3. ^ Aisen P, Leibman A, Zweier J (March 1978). "Stoichiometric and site characteristics of the binding of iron to human transferrin". J. Biol. Chem. 253 (6): 1930–7. PMID 204636. 
  4. ^ a b c "Transferrin Structure". St. Edward's University. 2005-07-18. Retrieved 2009-04-24. 
  5. ^ a b c d e Macedo MF, de Sousa M (March 2008). "Transferrin and the transferrin receptor: of magic bullets and other concerns". Inflammation & Allergy Drug Targets 7 (1): 41–52. doi:10.2174/187152808784165162. PMID 18473900. 
  6. ^ PDB 1suv; Cheng Y, Zak O, Aisen P, Harrison SC, Walz T (February 2004). "Structure of the human transferrin receptor-transferrin complex". Cell 116 (4): 565–76. doi:10.1016/S0092-8674(04)00130-8. PMID 14980223. 
  7. ^ PDB 2nsu; Hafenstein S, Palermo LM, Kostyuchenko VA, Xiao C, Morais MC, Nelson CD, Bowman VD, Battisti AJ, Chipman PR, Parrish CR, Rossmann MG (April 2007). "Asymmetric binding of transferrin receptor to parvovirus capsids". Proceedings of the National Academy of Sciences of the United States of America 104 (16): 6585–9. doi:10.1073/pnas.0701574104. PMC 1871829. PMID 17420467. 
  8. ^ Ritchie RF, Palomaki GE, Neveux LM, Navolotskaia O, Ledue TB, Craig WY (1999). "Reference distributions for the negative acute-phase serum proteins, albumin, transferrin and transthyretin: a practical, simple and clinically relevant approach in a large cohort". J. Clin. Lab. Anal. 13 (6): 273–9. doi:10.1002/(SICI)1098-2825(1999)13:6<273::AID-JCLA4>3.0.CO;2-X. PMID 10633294. 
  9. ^ Sharpe PC (November 2001). "Biochemical detection and monitoring of alcohol abuse and abstinence". Ann. Clin. Biochem. 38 (Pt 6): 652–64. doi:10.1258/0004563011901064. PMID 11732647. 
  10. ^ "Normal Reference Range Table". Interactive Case Study Companion to Pathlogical Basis of Disease. The University of Texas Southwestern Medical Center at Dallas. Retrieved 2008-10-25. 
    Kumar V, Hagler HK (1999). Interactive Case Study Companion to Robbins Pathologic Basis of Disease (6th Edition (CD-ROM for Windows & Macintosh, Individual) ed.). W B Saunders Co. ISBN 0-7216-8462-9. 
  11. ^ Storch S, Kübler B, Höning S, Ackmann M, Zapf J, Blum W, Braulke T (December 2001). "Transferrin binds insulin-like growth factors and affects binding properties of insulin-like growth factor binding protein-3". FEBS Lett. 509 (3): 395–8. doi:10.1016/S0014-5793(01)03204-5. PMID 11749962. 
  12. ^ Weinzimer SA, Gibson TB, Collett-Solberg PF, Khare A, Liu B, Cohen P (April 2001). "Transferrin is an insulin-like growth factor-binding protein-3 binding protein". J. Clin. Endocrinol. Metab. 86 (4): 1806–13. doi:10.1210/jcem.86.4.7380. PMID 11297622. 
  13. ^ Hsu SL, Lin YF, Chou CK (April 1992). "Transcriptional regulation of transferrin and albumin genes by retinoic acid in human hepatoma cell line Hep3B". Biochem. J. 283 (2): 611–5. PMC 1131079. PMID 1315521. 
  14. ^ M Ching-Ming Chung (October 1984). "Structure and function of transferrin". Biochemical Education 12 (4): 146–154. doi:10.1016/0307-4412(84)90118-3. 

Further reading

External links

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Transferrin Provide feedback

No Pfam abstract.

Internal database links

External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR001156

Transferrins are eukaryotic iron-binding glycoproteins that control the level of free iron in biological fluids [PUBMED:3032619]. The proteins have arisen by duplication of a domain, each duplicated domain binding one iron atom. Members of the family include blood serotransferrin (siderophilin); milk lactotransferrin (lactoferrin); egg white ovotransferrin (conalbumin); and membrane-associated melanotransferrin.

Additional members of this family include inhibitor of carbonic anhydrase (ICA; mammals), major yolk protein (sea urchins), saxiphilin (frog), pacifastin (crayfish), and TTF-1 (algae). Most family members contain two transferrin-like domains of around 340 amino acids, the result of an ancient duplication event [PUBMED:15621505]. Each of the duplicated domains can be further divided into two subdomains that form a cleft inside of which the iron atom is bound in iron-transporting transferrin [PUBMED:2585506]. The iron-coordinating residues consist of an aspartic acid, two tyrosines and a histidine, as well as an arginine that coordinates a requisite anion. In addition to iron and anion liganding residues, the transferrin-like domain contains conserved cysteine residues involved in disulphide bond formation.

Human lactoferrin is a serine peptidase belonging to MEROPS peptidase family S60, clan SR. It is found at high concentrations in all human secretions, where it plays a major role in mucosal defence. Lactoferrin cleaves IgA1 protease at an arginine-rich region defined by amino acids RRSRRSVR and digests Hap at a similar arginine-rich sequence (VRSRRAAR). Ser259 and Lys73 form a catalytic dyad, reminiscent of a number of bacterial serine proteases.

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan PBP (CL0177), which has the following description:

Periplasmic binding proteins (PBPs) consist of two large lobes that close around the bound ligand. This architecture is reiterated in transcriptional regulators, such as the lac repressors. In the process of evolution, genes encoding the PBPs have fused with genes for integral membrane proteins. Thus, diverse mammalian receptors contain extracellular ligand binding domains that are homologous to the PBPs; these include glutamate/glycine-gated ion channels such as the NMDA receptor, G protein-coupled receptors, including metabotropic glutamate, GABA-B, calcium sensing, and pheromone receptors, and atrial natriuretic peptide-guanylate cyclase receptors [2].

The clan contains the following 23 members:

DUF3834 HisG Lig_chan-Glu_bd Lipoprotein_8 Lipoprotein_9 LysR_substrate Mycoplasma_p37 NMT1 NMT1_2 OpuAC PBP_like PBP_like_2 Phosphonate-bd SBP_bac_1 SBP_bac_11 SBP_bac_3 SBP_bac_5 SBP_bac_6 SBP_bac_7 SBP_bac_8 TctC Transferrin VitK2_biosynth


We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

Representative proteomes NCBI
Jalview View  View  View  View  View  View  View  View 
HTML View  View  View  View  View  View     
PP/heatmap 1 View  View  View  View  View     
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

Representative proteomes NCBI

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

Representative proteomes NCBI
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...


This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Prosite
Previous IDs: transferrin;
Type: Domain
Author: Finn RD
Number in seed: 10
Number in full: 1389
Average length of the domain: 257.20 aa
Average identity of full alignment: 32 %
Average coverage of the sequence by the domain: 86.39 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 23193494 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 20.3 20.3
Trusted cut-off 20.3 20.3
Noise cut-off 19.7 20.2
Model length: 330
Family (HMM) version: 12
Download: download the raw HMM for this family

Species distribution

Sunburst controls


This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls


The tree shows the occurrence of this domain across different species. More...


Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.


There are 2 interactions for this family. More...

Transferrin TFR_dimer


For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the Transferrin domain has been found. There are 250 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...