Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
30  structures 880  species 0  interactions 3120  sequences 26  architectures

Family: WXG100 (PF06013)

Summary: Proteins of 100 residues with WXG

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

The Pfam group coordinates the annotation of Pfam families in Wikipedia, but we have not yet assigned a Wikipedia article to this family. If you think that a particular Wikipedia article provides good annotation, please let us know.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Proteins of 100 residues with WXG Provide feedback

ESAT-6 is a small protein appears to be of fundamental importance in virulence and protective immunity in Mycobacterium tuberculosis. Homologues have been detected in other Gram-positive bacterial species. It may represent a novel secretion system potentially driven by the PF01580 domains in the YukA-like proteins [1].

Literature references

  1. Pallen MJ; , Trends Microbiol 2002;10:209-212.: The ESAT-6/WXG100 superfamily -- and a new Gram-positive secretion system?. PUBMED:11973144 EPMC:11973144

  2. Burts ML, Williams WA, DeBord K, Missiakas DM; , Proc Natl Acad Sci U S A. 2005;102:1169-1174.: EsxA and EsxB are secreted by an ESAT-6-like system that is required for the pathogenesis of Staphylococcus aureus infections. PUBMED:15657139 EPMC:15657139

  3. Desvaux M, Hebraud M, Talon R, Henderson IR;, Trends Microbiol. 2009;17:338-340.: Outer membrane translocation: numerical protein secretion nomenclature in question in mycobacteria. PUBMED:19674902 EPMC:19674902

  4. Sutcliffe IC;, Antonie Van Leeuwenhoek. 2011;99:127-131.: New insights into the distribution of WXG100 protein secretion systems. PUBMED:20852931 EPMC:20852931

  5. Desvaux M, Hebraud M, Talon R, Henderson IR;, Trends Microbiol. 2009;17:139-145.: Secretion and subcellular localizations of bacterial proteins: a semantic awareness issue. PUBMED:19299134 EPMC:19299134


External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR010310

ESAT-6 is a small protein appears to be of fundamental importance in virulence and protective immunity in Mycobacterium tuberculosis. Homologues have been detected in other Gram-positive bacterial species. It may represent a novel secretion system potentially driven by the domains in the YukA-like proteins [PUBMED:11973144].

Members of this protein family include secretion targets for type main variants of type VII secretion systems (T7SS), one found in the Actinobacteria, one found in the Firmicutes. This model was derived through iteration from . The best characterised member of this family is ESAT-6 from Mycobacterium tuberculosis. Members of this family usually are ~100 amino acids in length but occasionally have long C-terminal extension.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan EsxAB (CL0352), which has the following description:

The WXG100 protein secretion system (Wss) is responsible for the secretion of WXG100 proteins (PF06013), such as ESAT-10 (6 kDa early secreted antigenic target) and CFP-10 (10 kDa culture filtrate protein) in Mycobacterium tuberculosis or EsxA (ESAT-6-like extracellularly secreted protein A) and EsxB in Staphylococcus aureus. These two proteins, generally encoded in the same gene cluster, form a 1:1 heterodimeric complex. These proteins are virulence factors involved in host-pathogen interaction [1], as demonstrated in Mycobacterium tuberculosis, Staphylococcus aureus or Bacillus anthracis. The Wss is encoded in many other Gram-positive (monoderm) bacteria. This superfamily contains a number of DUFs which are closely related and may or may not represent the same family of proteins.

The clan contains the following 6 members:

DUF2563 DUF2580 LXG PE PPE WXG100

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(120)
Full
(3120)
Representative proteomes NCBI
(1700)
Meta
(48)
RP15
(169)
RP35
(352)
RP55
(458)
RP75
(526)
Jalview View  View  View  View  View  View  View  View 
HTML View  View  View  View  View  View     
PP/heatmap 1 View  View  View  View  View     
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(120)
Full
(3120)
Representative proteomes NCBI
(1700)
Meta
(48)
RP15
(169)
RP35
(352)
RP55
(458)
RP75
(526)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(120)
Full
(3120)
Representative proteomes NCBI
(1700)
Meta
(48)
RP15
(169)
RP35
(352)
RP55
(458)
RP75
(526)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Pfam-B_7198 (release 9.0)
Previous IDs: DUF909;
Type: Family
Author: Moxon SJ, Studholme DJ
Number in seed: 120
Number in full: 3120
Average length of the domain: 84.80 aa
Average identity of full alignment: 18 %
Average coverage of the sequence by the domain: 66.58 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 23193494 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 27.0 27.0
Trusted cut-off 27.0 27.0
Noise cut-off 26.9 26.9
Model length: 86
Family (HMM) version: 7
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Show

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the WXG100 domain has been found. There are 30 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...