Summary: Protein-tyrosine phosphatase
Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.
This is the Wikipedia entry entitled "Protein tyrosine phosphatase". More...
Protein tyrosine phosphatase Edit Wikipedia article
This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.
This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.
Protein-tyrosine phosphatase Provide feedback
No Pfam abstract.
Literature references
-
Hof P, Pluskey S, Dhe-Paganon S, Eck MJ, Shoelson SE; , Cell 1998;92:441-450.: Crystal structure of the tyrosine phosphatase SHP-2. PUBMED:9491886 EPMC:9491886
Internal database links
SCOOP: | CDKN3 DSPc DSPn DUF442 Init_tRNA_PT Myotub-related PTPlike_phytase Y_phosphatase2 Y_phosphatase3 |
Similarity to PfamA using HHSearch: | DSPc PTPlike_phytase |
External database links
HOMSTRAD: | ptpase |
PRINTS: | PR00700 |
PROSITE: | PDOC00323 |
SCOP: | 1ypt |
This tab holds annotation information from the InterPro database.
InterPro entry IPR000242
This entry represents the PTPase domain found in several tyrosine-specific protein phosphatases (PTPases).
Structurally, all known receptor PTPases, are made up of a variable length extracellular domain, followed by a transmembrane region and a C-terminal catalytic cytoplasmic domain. Some of the receptor PTPases contain fibronectin type III (FN-III) repeats, immunoglobulin-like domains, MAM domains or carbonic anhydrase-like domains in their extracellular region. The cytoplasmic region generally contains two copies of the PTPase domain. The first seems to have enzymatic activity, while the second is inactive. The inactive domains of tandem phosphatases can be divided into two classes. Those which bind phosphorylated tyrosine residues may recruit multi-phosphorylated substrates for the adjacent active domains and are more conserved, while the other class have accumulated several variable amino acid substitutions and have a complete loss of tyrosine binding capability. The second class shows a release of evolutionary constraint for the sites around the catalytic centre, which emphasises a difference in function from the first group. There is a region of higher conservation common to both classes, suggesting a new regulatory centre [PUBMED:14739250]. PTPase domains consist of about 300 amino acids. There are two conserved cysteines, the second one has been shown to be absolutely required for activity. Furthermore, a number of conserved residues in its immediate vicinity have also been shown to be important.
Protein tyrosine (pTyr) phosphorylation is a common post-translational modification which can create novel recognition motifs for protein interactions and cellular localisation, affect protein stability, and regulate enzyme activity. Consequently, maintaining an appropriate level of protein tyrosine phosphorylation is essential for many cellular functions. Tyrosine-specific protein phosphatases (PTPase; EC) catalyse the removal of a phosphate group attached to a tyrosine residue, using a cysteinyl-phosphate enzyme intermediate. These enzymes are key regulatory components in signal transduction pathways (such as the MAP kinase pathway) and cell cycle control, and are important in the control of cell growth, proliferation, differentiation and transformation [PUBMED:9818190, PUBMED:14625689]. The PTP superfamily can be divided into four subfamilies [PUBMED:12678841]:
- (1) pTyr-specific phosphatases
- (2) dual specificity phosphatases (dTyr and dSer/dThr)
- (3) Cdc25 phosphatases (dTyr and/or dThr)
- (4) LMW (low molecular weight) phosphatases
Based on their cellular localisation, PTPases are also classified as:
- Receptor-like, which are transmembrane receptors that contain PTPase domains [PUBMED:16672235]
- Non-receptor (intracellular) PTPases [PUBMED:8948575]
All PTPases carry the highly conserved active site motif C(X)5R (PTP signature motif), employ a common catalytic mechanism, and share a similar core structure made of a central parallel beta-sheet with flanking alpha-helices containing a beta-loop-alpha-loop that encompasses the PTP signature motif [PUBMED:9646865]. Functional diversity between PTPases is endowed by regulatory domains and subunits.
Gene Ontology
The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.
Molecular function | protein tyrosine phosphatase activity (GO:0004725) |
Biological process | protein dephosphorylation (GO:0006470) |
Domain organisation
Below is a listing of the unique domain organisations or architectures in which this domain is found. More...
Loading domain graphics...
Pfam Clan
This family is a member of clan Phosphatase (CL0031), which has the following description:
This family includes tyrosine and dual specificity phosphatase enzymes.
The clan contains the following 16 members:
CDKN3 DSPc DSPn DUF442 Init_tRNA_PT LMWPc Myotub-related NleF_casp_inhib PTPlike_phytase PTS_IIB Rhodanese Ssu72 Syja_N Y_phosphatase Y_phosphatase2 Y_phosphatase3Alignments
We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the UniProtKB sequence database, the NCBI sequence database, and our metagenomics sequence database. More...
View options
We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.
Seed (92) |
Full (28456) |
Representative proteomes | UniProt (47447) |
NCBI (113504) |
Meta (210) |
||||
---|---|---|---|---|---|---|---|---|---|
RP15 (4955) |
RP35 (10250) |
RP55 (19791) |
RP75 (29545) |
||||||
Jalview | |||||||||
HTML | |||||||||
PP/heatmap | 1 |
1Cannot generate PP/Heatmap alignments for seeds; no PP data available
Key:
available,
not generated,
— not available.
Format an alignment
Download options
We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.
Seed (92) |
Full (28456) |
Representative proteomes | UniProt (47447) |
NCBI (113504) |
Meta (210) |
||||
---|---|---|---|---|---|---|---|---|---|
RP15 (4955) |
RP35 (10250) |
RP55 (19791) |
RP75 (29545) |
||||||
Raw Stockholm | |||||||||
Gzipped |
You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.
HMM logo
HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...
Trees
This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.
Note: You can also download the data file for the tree.
Curation and family details
This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.
Curation
Seed source: | Swissprot_feature_table |
Previous IDs: | none |
Type: | Domain |
Sequence Ontology: | SO:0000417 |
Author: |
Sonnhammer ELL |
Number in seed: | 92 |
Number in full: | 28456 |
Average length of the domain: | 212.10 aa |
Average identity of full alignment: | 32 % |
Average coverage of the sequence by the domain: | 31.25 % |
HMM information
HMM build commands: |
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 47079205 -E 1000 --cpu 4 HMM pfamseq
|
||||||||||||
Model details: |
|
||||||||||||
Model length: | 235 | ||||||||||||
Family (HMM) version: | 28 | ||||||||||||
Download: | download the raw HMM for this family |
Species distribution
Sunburst controls
HideWeight segments by...
Change the size of the sunburst
Colour assignments
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Selections
Align selected sequences to HMM
Generate a FASTA-format file
Clear selection
This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...
Tree controls
HideThe tree shows the occurrence of this domain across different species. More...
Loading...
Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.
Interactions
Structures
For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the Y_phosphatase domain has been found. There are 628 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein sequence.
Loading structure mapping...