Summary: bZIP transcription factor
Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.
This is the Wikipedia entry entitled "BZIP domain". More...
BZIP domain Edit Wikipedia article
bZIP transcription factor | |||||||||
---|---|---|---|---|---|---|---|---|---|
![]() CREB (top) is a transcription factor capable of binding DNA via the bZIP domain (bottom) and regulating gene expression. | |||||||||
Identifiers | |||||||||
Symbol | bZIP_1 | ||||||||
Pfam | PF00170 | ||||||||
InterPro | IPR011616 | ||||||||
PROSITE | PDOC00036 | ||||||||
SCOPe | 1ysa / SUPFAM | ||||||||
CDD | cd14686 | ||||||||
Membranome | 235 | ||||||||
|
The Basic Leucine Zipper Domain (bZIP domain) is found in many DNA binding eukaryotic proteins. One part of the domain contains a region that mediates sequence specific DNA binding properties and the leucine zipper that is required to hold together (dimerize) two DNA binding regions. The DNA binding region comprises a number of basic amino acids such as arginine and lysine. Proteins containing this domain are transcription factors.[1][2]
Contents
bZIP transcription factors
bZIP transcription factors are found in all eukaryotes and form one of the largest families of dimerizing TFs.[3][4] An evolutionary study from 2008 revealed that 4 bZIP genes were encoded by the genome of the most recent common ancestor of all plants.[5] Interactions between bZIP transcription factors are numerous and complex [6][7][3] and play important roles in cancer development[8] in epithelial tissues, steroid hormone synthesis by cells of endocrine tissues,[9] factors affecting reproductive functions,[10] and several other phenomena that affect human health.
bZIP domain containing proteins
- AP-1 fos/jun heterodimer that forms a transcription factor
- Jun-B transcription factor
- CREB cAMP response element transcription factor
- OPAQUE2 (O2) transcription factor of the 22-kD zein gene that encodes a class of storage proteins in the endosperm of maize (Zea Mays) kernels
- NFE2L2 or Nrf2
- Bzip Maf transcription factors
Human proteins containing this domain
ATF1; ATF2; ATF4; ATF5; ATF6; ATF7; BACH1; BACH2; BATF; BATF2; CEBPA; CEBPB; CEBPD; CEBPE; CEBPG; CEBPZ; CREB1; CREB3; CREB3L1; CREB3L2; CREB3L3; CREB3L4; CREB5; CREBL1; CREM; E4BP4; FOSL1; FOSL2; JUN; JUNB; JUND; MAFA; MAFB; NFE2; NFE2L2; NFE2L3; SNFT; XBP1
References
- ^ Ellenberger T (1994). "Getting a grip in DNA recognition: structures of the basic region leucine zipper, and the basic region helix-loop-helix DNA-binding domains". Curr. Opin. Struct. Biol. 4 (1): 12–21. doi:10.1016/S0959-440X(94)90054-X.
- ^ Hurst HC (1995). "Transcription factors 1: bZIP proteins". Protein Profile. 2 (2): 101–68. PMID 7780801.
- ^ a b Amoutzias, G. D.; Veron, A. S.; Weiner, J.; Robinson-Rechavi, M.; Bornberg-Bauer, E.; Oliver, S. G.; Robertson, D. L. (2007-03-01). "One billion years of bZIP transcription factor evolution: conservation and change in dimerization and DNA-binding site specificity". Molecular Biology and Evolution. 24 (3): 827–835. doi:10.1093/molbev/msl211. ISSN 0737-4038. PMID 17194801.
- ^ Amoutzias, Grigoris D.; Robertson, David L.; Van de Peer, Yves; Oliver, Stephen G. (2008-05-01). "Choose your partners: dimerization in eukaryotic transcription factors". Trends in Biochemical Sciences. 33 (5): 220–229. doi:10.1016/j.tibs.2008.02.002. ISSN 0968-0004. PMID 18406148.
- ^ Corrêa LG, Riaño-Pachón DM, Schrago CG, dos Santos RV, Mueller-Roeber B, Vincentz M (2008). Shiu S (ed.). "The Role of bZIP Transcription Factors in Green Plant Evolution: Adaptive Features Emerging from Four Founder Genes". PLoS ONE. 3 (8): e2944. doi:10.1371/journal.pone.0002944. PMC 2492810. PMID 18698409.
- ^ Vinson, Charles; Acharya, Asha; Taparowsky, Elizabeth J. (2006-01-01). "Deciphering B-ZIP transcription factor interactions in vitro and in vivo" (PDF). Biochimica et Biophysica Acta. 1759 (1–2): 4–12. doi:10.1016/j.bbaexp.2005.12.005. ISSN 0006-3002. PMID 16580748.
- ^ Newman, John R. S.; Keating, Amy E. (2003-06-27). "Comprehensive identification of human bZIP interactions with coiled-coil arrays". Science. 300 (5628): 2097–2101. doi:10.1126/science.1084648. ISSN 1095-9203. PMID 12805554.
- ^ Vlahopoulos SA, Logotheti S, Mikas D, Giarika A, Gorgoulis V, Zoumpourlis V (April 2008). "The role of ATF-2 in oncogenesis". BioEssays. 30 (4): 314–27. doi:10.1002/bies.20734. PMID 18348191.
- ^ Manna PR, Dyson MT, Eubank DW, Clark BJ, Lalli E, Sassone-Corsi P, Zeleznik AJ, Stocco DM (January 2002). "Regulation of steroidogenesis and the steroidogenic acute regulatory protein by a member of the cAMP response-element binding protein family". Mol. Endocrinol. 16 (1): 184–99. doi:10.1210/me.16.1.184. PMID 11773448.
- ^ Hoare S, Copland JA, Wood TG, Jeng YJ, Izban MG, Soloff MS (May 1999). "Identification of a GABP alpha/beta binding site involved in the induction of oxytocin receptor gene expression in human breast cells, potentiation by c-Fos/c-Jun". Endocrinology. 140 (5): 2268–79. doi:10.1210/en.140.5.2268. PMID 10218980.
External links
This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.
This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.
bZIP transcription factor Provide feedback
The Pfam entry includes the basic region and the leucine zipper region.
Internal database links
SCOOP: | ADIP APC_N_CC ASD2 ATG16 bZIP_2 bZIP_Maf CCD48 CENP-F_leu_zip Crescentin DivIC DUF3450 DUF812 ERM FlaC_arch GAS GIT_CC HALZ HAP1_N HAUS-augmin3 Jun KASH_CCD Laminin_I Macoilin NRBF2 PAP1 Phlebovirus_NSM SHE3 SR-25 SUIM_assoc TMF_TATA_bd TSC22 UPF0242 YabA ZapB |
Similarity to PfamA using HHSearch: | bZIP_Maf bZIP_2 |
External database links
PRINTS: | PR00041 PR00042 PR00043 |
PROSITE: | PDOC00036 |
SCOP: | 1ysa |
This tab holds annotation information from the InterPro database.
InterPro entry IPR004827
The basic-leucine zipper (bZIP) domain transcription factors [PUBMED:7780801] of eukaryotic are proteins that contain a basic region mediating sequence-specific DNA-binding followed by a leucine zipper region required for dimerisation.
Gene Ontology
The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.
Molecular function | DNA-binding transcription factor activity (GO:0003700) |
Biological process | regulation of transcription, DNA-templated (GO:0006355) |
Domain organisation
Below is a listing of the unique domain organisations or architectures in which this domain is found. More...
Loading domain graphics...
Pfam Clan
Alignments
We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the UniProtKB sequence database, the NCBI sequence database, and our metagenomics sequence database. More...
View options
We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.
Seed (15) |
Full (22636) |
Representative proteomes | UniProt (35180) |
NCBI (56717) |
Meta (26) |
||||
---|---|---|---|---|---|---|---|---|---|
RP15 (2214) |
RP35 (8921) |
RP55 (15895) |
RP75 (22615) |
||||||
Jalview | |||||||||
HTML | |||||||||
PP/heatmap | 1 |
1Cannot generate PP/Heatmap alignments for seeds; no PP data available
Key:
available,
not generated,
— not available.
Format an alignment
Download options
We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.
Seed (15) |
Full (22636) |
Representative proteomes | UniProt (35180) |
NCBI (56717) |
Meta (26) |
||||
---|---|---|---|---|---|---|---|---|---|
RP15 (2214) |
RP35 (8921) |
RP55 (15895) |
RP75 (22615) |
||||||
Raw Stockholm | |||||||||
Gzipped |
You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.
HMM logo
HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...
Trees
This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.
Note: You can also download the data file for the tree.
Curation and family details
This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.
Curation
Seed source: | Prosite |
Previous IDs: | bZIP; |
Type: | Coiled-coil |
Sequence Ontology: | SO:0001080 |
Author: |
Sonnhammer ELL |
Number in seed: | 15 |
Number in full: | 22636 |
Average length of the domain: | 61.00 aa |
Average identity of full alignment: | 29 % |
Average coverage of the sequence by the domain: | 16.45 % |
HMM information
HMM build commands: |
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 47079205 -E 1000 --cpu 4 HMM pfamseq
|
||||||||||||
Model details: |
|
||||||||||||
Model length: | 64 | ||||||||||||
Family (HMM) version: | 22 | ||||||||||||
Download: | download the raw HMM for this family |
Species distribution
Sunburst controls
HideWeight segments by...
Change the size of the sunburst
Colour assignments
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Selections
Align selected sequences to HMM
Generate a FASTA-format file
Clear selection
This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...
Tree controls
HideThe tree shows the occurrence of this domain across different species. More...
Loading...
Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.
Interactions
There are 13 interactions for this family. More...
Filament Tropomyosin GGDEF Dynein_light TIG IRF Filament Tropomyosin bZIP_2 bZIP_1 RHD_DNA_bind GP41 bZIP_MafStructures
For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the bZIP_1 domain has been found. There are 58 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein sequence.
Loading structure mapping...