Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
34  structures 7880  species 4  interactions 15812  sequences 152  architectures

Family: Methyltr_RsmB-F (PF01189)

Summary: 16S rRNA methyltransferase RsmB/F

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

The Pfam group coordinates the annotation of Pfam families in Wikipedia, but we have not yet assigned a Wikipedia article to this family. If you think that a particular Wikipedia article provides good annotation, please let us know.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

16S rRNA methyltransferase RsmB/F Provide feedback

This is the catalytic core of this SAM-dependent 16S ribosomal methyltransferase RsmB/F enzyme [1,2]. There is a catalytic cysteine residue at 180 in UniProtKB:Q5SII2 with another highly conserved cysteine at residue 230. It methylates the C(5) position of cytosine 2870 (m5C2870) in 25S rRNA [1,2].

Literature references

  1. Ishikawa I, Sakai N, Tamura T, Yao M, Watanabe N, Tanaka I;, Proteins. 2004;54:814-816.: Crystal structure of human p120 homologue protein PH1374 from Pyrococcus horikoshii. PUBMED:14997580 EPMC:14997580

  2. Demirci H, Larsen LH, Hansen T, Rasmussen A, Cadambi A, Gregory ST, Kirpekar F, Jogl G;, RNA. 2010;16:1584-1596.: Multi-site-specific 16S rRNA methyltransferase RsmF from Thermus thermophilus. PUBMED:20558545 EPMC:20558545


Internal database links

External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR001678

The C-terminal catalytic domain of ribosomal RNA cysteine methyltransferases is highly conserved in archaeal, bacterial and eukaryotic proteins [PUBMED:21123870], such as ribosomal RNA methyltransferase B (RsmB, Sun, Fmu) and Nop2. Escherichia coli RsmB methylates cysteine C967 in 16S rRNA [PUBMED:21123870]. Nop2 methylates cysteine C2870 in the 25S rRNA of S. cerevisiae [PUBMED:23913415] and is critical for 60S biogenesis [PUBMED:8972218].

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan NADP_Rossmann (CL0063), which has the following description:

A class of redox enzymes are two domain proteins. One domain, termed the catalytic domain, confers substrate specificity and the precise reaction of the enzyme. The other domain, which is common to this class of redox enzymes, is a Rossmann-fold domain. The Rossmann domain binds nicotinamide adenine dinucleotide (NAD+) and it is this cofactor that reversibly accepts a hydride ion, which is lost or gained by the substrate in the redox reaction. Rossmann domains have an alpha/beta fold, which has a central beta sheet, with approximately five alpha helices found surrounding the beta sheet.The strands forming the beta sheet are found in the following characteristic order 654123. The inter sheet crossover of the stands in the sheet form the NAD+ binding site [1]. In some more distantly relate Rossmann domains the NAD+ cofactor is replaced by the functionally similar cofactor FAD.

The clan contains the following 204 members:

2-Hacid_dh_C 3Beta_HSD 3HCDH_N 3HCDH_RFF adh_short adh_short_C2 ADH_zinc_N ADH_zinc_N_2 AdoHcyase_NAD AdoMet_MTase AlaDh_PNT_C Amino_oxidase ApbA AviRa B12-binding Bac_GDH Bin3 Bmt2 CbiJ CheR CMAS CmcI CoA_binding CoA_binding_2 CoA_binding_3 Cons_hypoth95 DAO DapB_N DFP DNA_methylase DOT1 DRE2_N DREV DUF1188 DUF1442 DUF1611_N DUF166 DUF1776 DUF2431 DUF268 DUF2855 DUF3410 DUF364 DUF43 DUF5129 DUF5130 DUF938 DXP_reductoisom DXPR_C Eco57I ELFV_dehydrog Eno-Rase_FAD_bd Eno-Rase_NADH_b Enoyl_reductase Epimerase F420_oxidored FAD_binding_2 FAD_binding_3 FAD_oxidored Fibrillarin FMO-like FmrO FtsJ G6PD_N GCD14 GDI GDP_Man_Dehyd GFO_IDH_MocA GIDA GidB GLF Glu_dehyd_C Glyco_hydro_4 Glyco_tran_WecB GMC_oxred_N Gp_dh_N GRAS GRDA HI0933_like HIM1 IlvN ISPD_C K_oxygenase KR LCM Ldh_1_N LpxI_N Lycopene_cycl Malic_M Mannitol_dh MCRA Met_10 Methyltr_RsmB-F Methyltr_RsmF_N Methyltrans_Mon Methyltrans_SAM Methyltransf_10 Methyltransf_11 Methyltransf_12 Methyltransf_14 Methyltransf_15 Methyltransf_16 Methyltransf_17 Methyltransf_18 Methyltransf_19 Methyltransf_2 Methyltransf_20 Methyltransf_21 Methyltransf_22 Methyltransf_23 Methyltransf_24 Methyltransf_25 Methyltransf_28 Methyltransf_29 Methyltransf_3 Methyltransf_30 Methyltransf_31 Methyltransf_32 Methyltransf_33 Methyltransf_34 Methyltransf_4 Methyltransf_5 Methyltransf_7 Methyltransf_8 Methyltransf_9 Methyltransf_PK MethyltransfD12 MetW Mg-por_mtran_C MOLO1 Mqo MT-A70 MTS Mur_ligase N2227 N6-adenineMlase N6_Mtase N6_N4_Mtase NAD_binding_10 NAD_binding_2 NAD_binding_3 NAD_binding_4 NAD_binding_5 NAD_binding_7 NAD_binding_8 NAD_binding_9 NAD_Gly3P_dh_N NAS NmrA NNMT_PNMT_TEMT NodS NSP11 NSP16 OCD_Mu_crystall Orbi_VP4 PALP PARP_regulatory PCMT PDH PglD_N Polysacc_syn_2C Polysacc_synt_2 Pox_MCEL Pox_mRNA-cap Prenylcys_lyase PrmA PRMT5 Pyr_redox Pyr_redox_2 Pyr_redox_3 Reovirus_L2 RmlD_sub_bind Rossmann-like rRNA_methylase