Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
29  structures 3245  species 6  interactions 9094  sequences 329  architectures

Family: zf-C3HC4 (PF00097)

Summary: Zinc finger, C3HC4 type (RING finger)

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "RING finger domain". More...

RING finger domain Edit Wikipedia article

Zinc finger, C3HC4 type (RING finger)
1chc animated.gif
Structure of the C3HC4 domain.[1] Zinc ions are black spheres, coordinated by cysteines residues (blue).
Identifiers
Symbol zf-C3HC4
Pfam PF00097
InterPro IPR001841
SMART SM00184
PROSITE PDOC00449
SCOP 1chc
SUPERFAMILY 1chc

In molecular biology, a RING (Really Interesting New Gene) finger domain is a protein structural domain of zinc finger type which contains a Cys3HisCys4 amino acid motif which binds two zinc cations.[2][3][4][5] This protein domain contains from 40 to 60 amino acids. Many proteins containing a RING finger play a key role in the ubiquitination pathway.

Zinc fingers[edit]

Zinc finger (Znf) domains are relatively small protein motifs that bind one or more zinc atoms, and which usually contain multiple finger-like protrusions that make tandem contacts with their target molecule. They bind DNA, RNA, protein and/or lipid substrates.[6][7][8][9][10] Their binding properties depend on the amino acid sequence of the finger domains and of the linker between fingers, as well as on the higher-order structures and the number of fingers. Znf domains are often found in clusters, where fingers can have different binding specificities. There are many superfamilies of Znf motifs, varying in both sequence and structure. They display considerable versatility in binding modes, even between members of the same class (e.g. some bind DNA, others protein), suggesting that Znf motifs are stable scaffolds that have evolved specialised functions. For example, Znf-containing proteins function in gene transcription, translation, mRNA trafficking, cytoskeleton organisation, epithelial development, cell adhesion, protein folding, chromatin remodelling and zinc sensing.[11] Zinc-binding motifs are stable structures, and they rarely undergo conformational changes upon binding their target.

Some Zn finger domains have diverged such that they still maintain their core structure, but have lost their ability to bind zinc, using other means such as salt bridges or binding to other metals to stabilise the finger-like folds.

Function[edit]

Many RING finger domains simultaneously bind ubiquitination enzymes and their substrates and hence function as ligases. Ubiquitination in turn targets the substrate protein for degradation.[12][13][14]

Structure[edit]

The RING finger domain has the consensus sequence C-X2-C-X[9-39]-C-X[1-3]-H-X[2-3]-C-X2-C-X[4-48]-C-X2-C.[2] where:

  • C is a conserved cysteine residue involved zinc coordination,
  • H is a conserved histidine involved in zinc coordination,
  • Zn is zinc atom, and
  • X is any amino acid residue.

The following is a schematic representation of the structure of the RING finger domain:[2]

                              x x x     x x x
                             x      x x      x
                            x       x x       x
                           x        x x        x
                          C        C   C        C
                         x  \    / x   x \    /  x
                         x    Zn   x   x   Zn    x
                          C /    \ H   C /    \ C
                          x         x x         x
                 x x x x x x         x         x x x x x x

Examples[edit]

Examples of human genes which encode proteins containing a RING finger domain include:

AMFR, BBAP, BFAR, BIRC2, BIRC3, BIRC7, BIRC8, BMI1, BRAP, BRCA1, CBL, CBLB, CBLC, CBLL1, CHFR, COMMD3, DTX1, DTX2, DTX3, DTX3L, DTX4, DZIP3, HCGV, HLTF, HOIL-1, IRF2BP2, KIAA1542, LNX1, LNX2, LOC51136, LONRF1, LONRF2, LONRF3, MARCH1, MARCH10, MARCH2, MARCH3, MARCH4, MARCH5, MARCH6, MARCH7, MARCH8, MARCH9, MEX3A, MEX3B, MEX3C, MEX3D, MGRN1, MIB1, MID1, MID2, MKRN1, MKRN2, MKRN3, MKRN4, MNAT1, MYLIP, NFX1, NFX2, PCGF1, PCGF2, PCGF3, PCGF4, PCGF5, PCGF6, PDZRN3, PDZRN4, PEX10, PJA1, PJA2, PML, PML-RAR, PXMP3, RAD18, RAG1, RAPSN, RBCK1, RBX1, RC3H1, RC3H2, RCHY1, RFP2, RFPL1, RFPL2, RFPL3, RFPL4B, RFWD2, RFWD3, RING1, RNF2, RNF4, RNF5, RNF6, RNF7, RNF8, RNF10, RNF11, RNF12, RNF13, RNF14, RNF19A, RNF20, RNF24, RNF25, RNF26, RNF32, RNF38, RNF39, RNF40, RNF41, RNF43, RNF44, RNF55, RNF71, RNF103, RNF111, RNF113A, RNF113B, RNF121, RNF122, RNF123, RNF125, RNF126, RNF128, RNF130, RNF133, RNF135, RNF138, RNF139, RNF141, RNF144A, RNF145, RNF146, RNF148, RNF149, RNF150, RNF151, RNF152, RNF157, RNF165, RNF166, RNF167, RNF168, RNF169, RNF170, RNF175, RNF180, RNF181, RNF182, RNF185, RNF207, RNF213, RNF215, SH3MD4, SH3RF1, SH3RF2, SYVN1, TIF1, TMEM118, TOPORS, TRAF2, TRAF3, TRAF4, TRAF5, TRAF6, TRAF7, TRAIP, TRIM2, TRIM3, TRIM4, TRIM5, TRIM6, TRIM7, TRIM8, TRIM9, TRIM10, TRIM11, TRIM13, TRIM15, TRIM17, TRIM21, TRIM22, TRIM23, TRIM24, TRIM25, TRIM26, TRIM27, TRIM28, TRIM31, TRIM32, TRIM34, TRIM35, TRIM36, TRIM38, TRIM39, TRIM40, TRIM41, TRIM42, TRIM43, TRIM45, TRIM46, TRIM47, TRIM48, TRIM49, TRIM50, TRIM52, TRIM54, TRIM55, TRIM56, TRIM58, TRIM59, TRIM60, TRIM61, TRIM62, TRIM63, TRIM65, TRIM67, TRIM68, TRIM69, TRIM71, TRIM72, TRIM73, TRIM74, TRIML1, TTC3, UHRF1, UHRF2, VPS11, VPS8, ZNF179, ZNF294, ZNF313, ZNF364, ZNF650, ZNFB7, ZNRF1, ZNRF2, ZNRF3, ZNRF4, and ZSWIM2.

References[edit]

  1. ^ Barlow PN, Luisi B, Milner A, Elliott M, Everett R (March 1994). "Structure of the C3HC4 domain by 1H-nuclear magnetic resonance spectroscopy. A new structural class of zinc-finger". J. Mol. Biol. 237 (2): 201–11. doi:10.1006/jmbi.1994.1222. PMID 8126734. 
  2. ^ a b c Borden KL, Freemont PS (1996). "The RING finger domain: a recent example of a sequence-structure family". Curr. Opin. Struct. Biol. 6 (3): 395–401. doi:10.1016/S0959-440X(96)80060-1. PMID 8804826. 
  3. ^ Hanson IM, Poustka A, Trowsdale J (1991). "New genes in the class II region of the human major histocompatibility complex". Genomics 10 (2): 417–24. doi:10.1016/0888-7543(91)90327-B. PMID 1906426. 
  4. ^ Freemont PS, Hanson IM, Trowsdale J (1991). "A novel cysteine-rich sequence motif". Cell 64 (3): 483–4. doi:10.1016/0092-8674(91)90229-R. PMID 1991318. 
  5. ^ Lovering R, Hanson IM, Borden KL, Martin S, O'Reilly NJ, Evan GI, Rahman D, Pappin DJ, Trowsdale J, Freemont PS (1993). "Identification and preliminary characterization of a protein motif related to the zinc finger". Proc. Natl. Acad. Sci. U.S.A. 90 (6): 2112–6. doi:10.1073/pnas.90.6.2112. PMC 46035. PMID 7681583. 
  6. ^ Klug A (1999). "Zinc finger peptides for the regulation of gene expression". J. Mol. Biol. 293 (2): 215–8. doi:10.1006/jmbi.1999.3007. PMID 10529348. 
  7. ^ Hall TM (2005). "Multiple modes of RNA recognition by zinc finger proteins". Curr. Opin. Struct. Biol. 15 (3): 367–73. doi:10.1016/j.sbi.2005.04.004. PMID 15963892. 
  8. ^ Brown RS (2005). "Zinc finger proteins: getting a grip on RNA". Curr. Opin. Struct. Biol. 15 (1): 94–8. doi:10.1016/j.sbi.2005.01.006. PMID 15718139. 
  9. ^ Gamsjaeger R, Liew CK, Loughlin FE, Crossley M, Mackay JP (2007). "Sticky fingers: zinc-fingers as protein-recognition motifs". Trends Biochem. Sci. 32 (2): 63–70. doi:10.1016/j.tibs.2006.12.007. PMID 17210253. 
  10. ^ Matthews JM, Sunde M (2002). "Zinc fingers--folds for many occasions". IUBMB Life 54 (6): 351–5. doi:10.1080/15216540216035. PMID 12665246. 
  11. ^ Laity JH, Lee BM, Wright PE (2001). "Zinc finger proteins: new insights into structural and functional diversity". Curr. Opin. Struct. Biol. 11 (1): 39–46. doi:10.1016/S0959-440X(00)00167-6. PMID 11179890. 
  12. ^ Lorick KL, Jensen JP, Fang S, Ong AM, Hatakeyama S, Weissman AM (1999). "RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination". Proc. Natl. Acad. Sci. U.S.A. 96 (20): 11364–9. doi:10.1073/pnas.96.20.11364. PMC 18039. PMID 10500182. 
  13. ^ Joazeiro CA, Weissman AM (2000). "RING finger proteins: mediators of ubiquitin ligase activity". Cell 102 (5): 549–52. doi:10.1016/S0092-8674(00)00077-5. PMID 11007473. 
  14. ^ Freemont PS (2000). "RING for destruction?". Curr. Biol. 10 (2): R84–7. doi:10.1016/S0960-9822(00)00287-6. PMID 10662664. 

External links[edit]

This article incorporates text from the public domain Pfam and InterPro IPR001841

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Zinc finger, C3HC4 type (RING finger) Provide feedback

The C3HC4 type zinc-finger (RING finger) is a cysteine-rich domain of 40 to 60 residues that coordinates two zinc ions, and has the consensus sequence: C-X2-C-X(9-39)-C-X(1-3)-H-X(2-3)-C-X2-C-X(4-48)-C-X2-C where X is any amino acid [1]. Many proteins containing a RING finger play a key role in the ubiquitination pathway [2].

Literature references

  1. Borden KL, Freemont PS; , Curr Opin Struct Biol 1996;6:395-401.: The RING finger domain: a recent example of a sequence-structure family. PUBMED:8804826 EPMC:8804826

  2. Lorick KL, Jensen JP, Fang S, Ong AM, Hatakeyama S, Weissman AM; , Proc Natl Acad Sci U S A 1999;96:11364-11369.: RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. PUBMED:10500182 EPMC:10500182


External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR018957

Zinc finger (Znf) domains are relatively small protein motifs which contain multiple finger-like protrusions that make tandem contacts with their target molecule. Some of these domains bind zinc, but many do not; instead binding other metals such as iron, or no metal at all. For example, some family members form salt bridges to stabilise the finger-like folds. They were first identified as a DNA-binding motif in transcription factor TFIIIA from Xenopus laevis (African clawed frog), however they are now recognised to bind DNA, RNA, protein and/or lipid substrates [PUBMED:10529348, PUBMED:15963892, PUBMED:15718139, PUBMED:17210253, PUBMED:12665246]. Their binding properties depend on the amino acid sequence of the finger domains and of the linker between fingers, as well as on the higher-order structures and the number of fingers. Znf domains are often found in clusters, where fingers can have different binding specificities. There are many superfamilies of Znf motifs, varying in both sequence and structure. They display considerable versatility in binding modes, even between members of the same class (e.g. some bind DNA, others protein), suggesting that Znf motifs are stable scaffolds that have evolved specialised functions. For example, Znf-containing proteins function in gene transcription, translation, mRNA trafficking, cytoskeleton organisation, epithelial development, cell adhesion, protein folding, chromatin remodelling and zinc sensing, to name but a few [PUBMED:11179890]. Zinc-binding motifs are stable structures, and they rarely undergo conformational changes upon binding their target.

The C3HC4 type zinc-finger (RING finger) is a cysteine-rich domain of 40 to 60 residues that coordinates two zinc ions, and has the consensus sequence: C-X2-C-X(9-39)-C-X(1-3)-H-X(2-3)-C-X2-C-X(4-48)-C-X2-C where X is any amino acid [PUBMED:8804826]. Many proteins containing a RING finger play a key role in the ubiquitination pathway [PUBMED:10500182].

More information about these proteins can be found at Protein of the Month: Zinc Fingers [PUBMED:].

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan RING (CL0229), which has the following description:

This clan includes the Ring zinc finger domains as well as the U-box domain that appears to have lost the zinc coordinating cysteine residues [1].

The clan contains the following 24 members:

Baculo_RING FANCL_C Prok-RING_1 Prok-RING_2 Prok-RING_4 RINGv Rtf2 U-box zf-Apc11 zf-C3HC4 zf-C3HC4_2 zf-C3HC4_3 zf-C3HC4_4 zf-MIZ zf-Nse zf-rbx1 zf-RING-like zf-RING_2 zf-RING_4 zf-RING_5 zf-RING_6 zf-RING_UBOX zf-UBP zf-UDP

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(35)
Full
(9094)
Representative proteomes NCBI
(27732)
Meta
(1125)
RP15
(1053)
RP35
(1488)
RP55
(2303)
RP75
(3178)
Jalview View  View  View  View  View  View  View  View 
HTML View    View  View  View  View     
PP/heatmap 1   View  View  View  View     
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(35)
Full
(9094)
Representative proteomes NCBI
(27732)
Meta
(1125)
RP15
(1053)
RP35
(1488)
RP55
(2303)
RP75
(3178)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(35)
Full
(9094)
Representative proteomes NCBI
(27732)
Meta
(1125)
RP15
(1053)
RP35
(1488)
RP55
(2303)
RP75
(3178)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Swissprot_feature_table
Previous IDs: none
Type: Domain
Author: Sonnhammer ELL, Vella Briffa B
Number in seed: 35
Number in full: 9094
Average length of the domain: 40.40 aa
Average identity of full alignment: 44 %
Average coverage of the sequence by the domain: 7.09 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild --amino -o /dev/null HMM SEED
search method: hmmsearch -Z 23193494 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 21.0 20.7
Trusted cut-off 21.0 20.7
Noise cut-off 20.9 20.6
Model length: 41
Family (HMM) version: 20
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Show

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Interactions

There are 6 interactions for this family. More...

UQ_con Cbl_N Cullin_Nedd8 zf-RAG1 zf-C3HC4 Cullin

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the zf-C3HC4 domain has been found. There are 29 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...