Summary: Chlorophyllase
Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.
This is the Wikipedia entry entitled "Chlorophyllase". More...
Chlorophyllase Edit Wikipedia article
![]() | This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages)
(Learn how and when to remove this template message)
|
Chlorophyllase | |||||||||
---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||
EC number | 3.1.1.14 | ||||||||
CAS number | 9025-96-1 | ||||||||
Databases | |||||||||
IntEnz | IntEnz view | ||||||||
BRENDA | BRENDA entry | ||||||||
ExPASy | NiceZyme view | ||||||||
KEGG | KEGG entry | ||||||||
MetaCyc | metabolic pathway | ||||||||
PRIAM | profile | ||||||||
PDB structures | RCSB PDB PDBe PDBsum | ||||||||
Gene Ontology | AmiGO / QuickGO | ||||||||
|
Chlorophyllase | |||||||||
---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||
Symbol | Chlorophyllase | ||||||||
Pfam | PF07224 | ||||||||
Pfam clan | CL0028 | ||||||||
InterPro | IPR017395 | ||||||||
|
Chlorophyllase (klawr-uh-fil-eys)[1] is the key enzyme in chlorophyll metabolism. It is a membrane protein that is commonly known as Chlase (EC 3.1.1.14, CLH) and systematically known as chlorophyll chlorophyllidohydrolase. Chlorophyllase can be found in the chloroplast, thylakoid membrane and etioplast of at least higher plants such as ferns, mosses, brown and red algae and diatoms. Chlase is the catalyst for the hydrolysis of chlorophyll to produce chlorophyllide (also called Chlide) and phytol. It is also known to function in the esterification of Chlide and transesterification. The enzyme functions optimally at pH 8.5 and 50 °C.[2][3][4]
Contents
Role of chlorophyllase in chlorophyll breakdown
Of high importance to all photosynthetic organisms is chlorophyll, and so, its synthesis and breakdown are closely regulated throughout the entire life cycle of the plant. Chlorophyll breakdown is most evident in seasonal changes as the plants lose their green color in the autumn; it is also evident in fruit ripening, leaf senescence and flowering. In this first step, chlorophyllase initiates the catabolism of chlorophyll to form chlorophyllide. Chlorophyll degradation occurs in the turnover of chlorophyll, as well as in the event of cell death caused by injuries, pathogenic attack, and other external factors.
Chlorophyllase’s role is two-fold as it functions in both de-greening processes, such as autumnal coloration, and is also thought to be involved in turnover and homeostasis of chlorophylls. Chlorophyllase catalysis of the initial step of chlorophyll breakdown is important for plant development and survival. The breakdown serves as a prerequisite in the detoxification of the potentially phototoxic chlorophyll and chlorophyll intermediates as it accompanies leaf senescence to non-fluorescent catabolites. Rapid degradation of chlorophyll and its intermediates is therefore necessary to prevent cell damage due to the potential phototoxicity of chlorophyll.[5][6][7]
Reaction and mechanism catalyzed by chlorophyllase
Chlorophyllase catalyzes the hydrolysis of ester bond to yield chlorophyllide and phytol. It reacts via transesterification or hydrolysis of a carboxylic ester in which its natural substrates are 13-OH-chlorophyll a, bacteriochlorophyll and chlorophyll a.
Hydrolysis of chlorophyll starts with the attack of a carbonyl group of chlorophyll by the oxygen of the hydroxyl group of the crucial serine residue of the chlorophyllase. This attack forms a tetrahedral transition state. The double bond of the attacked carbonyl reforms and the serine is then esterified to chlorophyllide. The phytol group consequently leaves the compound and replaces the serine residue on the chlorophyllase enzyme. The addition of water to the reaction cleaves the phytol off the enzyme. Next, through the reverse reaction, the oxygen on the hydroxy group from the water in the previous step attacks the carbonyl of the intermediate in order to form another tetrahedral transition state. The double bond of the carbonyl forms again and the serine residue returns to chlorophyllase and the ester of the chlorophyll is now a carboxylic acid. This product is chlorophyllide.[8]
Chlorophyllide is then broken down to Pheophorbide A. After Pheophorbide a is formed, the poryphin ring is cleaved by Pheophorbide an oxide to form RCC causing the plant to lose its green color. RCC is then broken down into pFCC.
Regulation
Posttranslational Regulation
Citrus sinesis and Chenopodium album were the first plants from which the genes encoding chlorophyllase were isolated. These experiments revealed an uncharacteristic encoded sequence (21 amino acids in Citrus sinensis and 30 amino acids in Chenopodium album) located on the N-terminal that was absent from the mature protein. The chlorophyllase enzyme is a smart choice as the rate limiting enzyme of the catabolic pathway since degreening and the expression of chlorophyllase is induced in ethylene-treated Citrus. Recent data, however, suggests that chlorophyllase is expressed at low levels during natural fruit development, when chlorophyll catabolism usually takes place. Also, some data suggests that chlorophyllase activity is not consistent with degreening during natural senescence. Finally, there is evidence that chlorophyllase has been found in the inner envelope membrane of chloroplast where it does not come in contact with chlorophyll. Recent studies inspired by inconsistent data revealed that chlorophyllase in Citrus lacking the 21 amino sequence on the N-terminal results in extensive chlorophyll breakdown and the degreening effect that should occur in vivo. This cleavage occurs in the chloroplast membrane fraction. Both the full chlorophyllase and the cleaved, mature chlorophyllase, however, experienced similar levels of activity in an in vitro assay. This data suggests that the mature protein comes in contact with its substrate more readily because of the N-terminal sequence and some natural regulation occurs that directly affects enzyme activity. Another possibility is that the suborganelle compartments breaking down allowing a greater amount of enzyme activity.[9]
Other forms of regulation
Chlorophyllide, the product of the reaction catalyzed by chlorophyllase, spontaneously combines with plant lipids such as phosphatidylcholine liposomes along with sulfoquinovosyl diacylglycerol. These two lipids cooperatively inhibit the activity of chlorophyllase, but this inhibition can be reversed by the presence of Mg++, a divalent cation.[10] The activity of chlorophyllase also depends on the pH and ionic content of the medium. The values of kcat and kcat/Km of chlorophyllase in the presence of chlorophyll showed pKa values of 6.3 and 6.7, respectively. Temperature also affects chlorophyllase activity. Wheat chlorophyllase is active from 25 to 75 °C. The enzyme is inactivated at temperatures above 85 °C. Wheat chlorophyllase is stable 20 °C higher than other chlorophyllases. These other chlorophyllases can stay active at temperatures up to 55 °C.[11]
Ethylene induces the synthesis of chlorophyllase and promotes the degreening of citrus fruits. Chlorophyllase was detected in protein extracts of ethylene treated fruit. Ethylene treated fruits had chlorophyllase activity increased by 5 fold in 24 hours. Ethylene, more specifically, induces increased rates of transcription of the chlorophyllase gene.[12][13]
There is also evidence of a highly conserved serine lipase domain in the chlorophyllase enzyme that contains a serine residue that is essential for enzyme activity. Histidne and aspartic acid residues are also a part of the catalytic triad of chlorophyllase as a serine hydrolase. Specific inhibitors for the serine hydrolase mechanism, therefore, effectively inhibit the chlorophyllase enzyme. Also, mutations at these specific amino acid residues causes complete loss of function since the mutations change the catalytic site of the chlorophyllase enzyme.[8]
References and further reading
- ^ chlorophyllase - Definitions from Dictionary.com
- ^ Yi Y, Kermasha S, Neufeld R (December 2006). "Characterization of sol-gel entrapped chlorophyllase". Biotechnol. Bioeng. 95 (5): 840–9. doi:10.1002/bit.21027. PMID 16804946.
- ^ Hornero-Méndez D, MÃnguez-Mosquera MI (2001). "Properties of chlorophyllase from Capsicum annuum L. fruits". Z. Naturforsch. C. 56 (11–12): 1015–21. doi:10.1515/znc-2001-11-1219. PMID 11837653.
- ^ Tsuchiya T, Ohta H, Okawa K, et al. (December 1999). "Cloning of chlorophyllase, the key enzyme in chlorophyll degradation: Finding of a lipase motif and the induction by methyl jasmonate". Proc. Natl. Acad. Sci. U.S.A. 96 (26): 15362–7. doi:10.1073/pnas.96.26.15362. PMC 24824. PMID 10611389.
- ^ Hörtensteiner S (October 1999). "Chlorophyll breakdown in higher plants and algae". Cell. Mol. Life Sci. 56 (3–4): 330–47. doi:10.1007/s000180050434. PMID 11212360.[permanent dead link]
- ^ Okazawa A, Tango L, Itoh Y, Fukusaki E, Kobayashi A (2006). "Characterization and subcellular localization of chlorophyllase from Ginkgo biloba". Z. Naturforsch. C. 61 (1–2): 111–7. doi:10.1515/znc-2006-1-220. PMID 16610227.
- ^ Fang Z, Bouwkamp J, Solomos T (1998). "Chlorophyllase activities and chlorophyll degradation during leaf senescence in non-yellowing mutant and wild type of Phaseolus vulgaris L.". J. Exp. Bot. 49 (320): 503–10. doi:10.1093/jexbot/49.320.503.
- ^ a b Tsuchiya T, Suzuki T, Yamada T, et al. (January 2003). "Chlorophyllase as a serine hydrolase: identification of a putative catalytic triad". Plant Cell Physiol. 44 (1): 96–101. doi:10.1093/pcp/pcg011. PMID 12552153.
- ^ Harpaz-Saad S, Azoulay T, Arazi T, et al. (March 2007). "Chlorophyllase Is a Rate-Limiting Enzyme in Chlorophyll Catabolism and Is Posttranslationally Regulated". Plant Cell. 19 (3): 1007–22. doi:10.1105/tpc.107.050633. PMC 1867358. PMID 17369368.
- ^ Lambers JW, Terpstra W (October 1985). "Inactivation of chlorophyllase by negatively charged plant membrane lipids". Biochim. Biophys. Acta. 831 (2): 225–35. doi:10.1016/0167-4838(85)90039-1. PMID 4041468.
- ^ Arkus KA, Cahoon EB, Jez JM (June 2005). "Mechanistic analysis of wheat chlorophyllase". Arch. Biochem. Biophys. 438 (2): 146–55. doi:10.1016/j.abb.2005.04.019. PMID 15913540.
- ^ Trebitsh T, Goldschmidt EE, Riov J (October 1993). "Ethylene induces de novo synthesis of chlorophyllase, a chlorophyll degrading enzyme, in Citrus fruit peel". Proc. Natl. Acad. Sci. U.S.A. 90 (20): 9441–5. doi:10.1073/pnas.90.20.9441. PMC 47584. PMID 11607429.
- ^ Jacob-Wilk D, Holland D, Goldschmidt EE, Riov J, Eyal Y (December 1999). "Chlorophyll breakdown by chlorophyllase: isolation and functional expression of the Chlase1 gene from ethylene-treated Citrus fruit and its regulation during development". Plant J. 20 (6): 653–61. doi:10.1046/j.1365-313X.1999.00637.x. PMID 10652137.
This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.
This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.
Chlorophyllase Provide feedback
This family consists of several plant specific Chlorophyllase proteins ( EC:3.1.1.14). Chlorophyllase (Chlase) is the first enzyme involved in chlorophyll (Chl) degradation and catalyses the hydrolysis of ester bond to yield chlorophyllide and phytol [1].
Literature references
-
Tsuchiya T, Ohta H, Okawa K, Iwamatsu A, Shimada H, Masuda T, Takamiya K; , Proc Natl Acad Sci U S A 1999;96:15362-15367.: Cloning of chlorophyllase, the key enzyme in chlorophyll degradation: finding of a lipase motif and the induction by methyl jasmonate. PUBMED:10611389 EPMC:10611389
-
Tsuchiya T, Suzuki T, Yamada T, Shimada H, Masuda T, Ohta H, Takamiya K; , Plant Cell Physiol 2003;44:96-101.: Chlorophyllase as a serine hydrolase: identification of a putative catalytic triad. PUBMED:12552153 EPMC:12552153
Internal database links
This tab holds annotation information from the InterPro database.
InterPro entry IPR017395
Chlorophyllase (Chlase) is an enzyme involved in chlorophyll degradation and catalyses the hydrolysis of the ester bond to yield chlorophyllide and phytol [PUBMED:10611389, PUBMED:15598807, PUBMED:17369368]. It is found in higher plants, green algae and diatoms [PUBMED:10611389]. It is important for de-greening processes such as fruit ripening, leaf senescence and flowering, as well as in the turnover and homeostasis of chlorophyll [PUBMED:16610227, PUBMED:18633118, PUBMED:17513504].
Chlase removes the lipophilic phytol moiety of chlorophyll [PUBMED:17996203]. It acts preferentially on chlorophyll a, but will also accept chlorophyll b and pheophytins as substrates [PUBMED:16669755]. Chlase functions as a rate-limiting enzyme in chlorophyll catabolism and is controlled via posttranslational regulation [PUBMED:17369368]. Ethylene and methyl jasmonate, which are known to accelerate senescence in many species, can enhance the activity of a form of Chlase [PUBMED:16669755].
This entry represents chloroplast-type Chlase.
Gene Ontology
The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.
Molecular function | chlorophyllase activity (GO:0047746) |
Biological process | chlorophyll catabolic process (GO:0015996) |
Domain organisation
Below is a listing of the unique domain organisations or architectures in which this domain is found. More...
Loading domain graphics...
Pfam Clan
This family is a member of clan AB_hydrolase (CL0028), which has the following description:
This catalytic domain is found in a very wide range of enzymes.
The clan contains the following 70 members:
Abhydro_lipase Abhydrolase_1 Abhydrolase_2 Abhydrolase_3 Abhydrolase_4 Abhydrolase_5 Abhydrolase_6 Abhydrolase_7 Abhydrolase_8 Abhydrolase_9 Acyl_transf_2 Asp2 AXE1 BAAT_C Chlorophyllase Chlorophyllase2 COesterase Cutinase DLH DUF1057 DUF1100 DUF1350 DUF1400 DUF1749 DUF2048 DUF2235 DUF2920 DUF2974 DUF3089 DUF3141 DUF3530 DUF452 DUF676 DUF726 DUF818 DUF829 DUF900 DUF915 EHN Esterase Esterase_PHB FSH1 Hydrolase_4 LCAT LIDHydrolase LIP Lipase Lipase3_N Lipase_2 Lipase_3 Ndr PAE PAF-AH_p_II Palm_thioest PE-PPE Peptidase_S10 Peptidase_S15 Peptidase_S28 Peptidase_S37 Peptidase_S9 PGAP1 PhaC_N PHB_depo_C PhoPQ_related Say1_Mug180 Ser_hydrolase Tannase Thioesterase UPF0227 VirJAlignments
We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the UniProtKB sequence database, the NCBI sequence database, and our metagenomics sequence database. More...
View options
We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.
Seed (4) |
Full (425) |
Representative proteomes | UniProt (1157) |
NCBI (13265) |
Meta (144) |
||||
---|---|---|---|---|---|---|---|---|---|
RP15 (30) |
RP35 (217) |
RP55 (391) |
RP75 (615) |
||||||
Jalview | |||||||||
HTML | |||||||||
PP/heatmap | 1 |
1Cannot generate PP/Heatmap alignments for seeds; no PP data available
Key:
available,
not generated,
— not available.
Format an alignment
Download options
We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.
Seed (4) |
Full (425) |
Representative proteomes | UniProt (1157) |
NCBI (13265) |
Meta (144) |
||||
---|---|---|---|---|---|---|---|---|---|
RP15 (30) |
RP35 (217) |
RP55 (391) |
RP75 (615) |
||||||
Raw Stockholm | |||||||||
Gzipped |
You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.
HMM logo
HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...
Trees
This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.
Note: You can also download the data file for the tree.
Curation and family details
This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.
Curation
Seed source: | Pfam-B_17130 (release 10.0) |
Previous IDs: | none |
Type: | Family |
Sequence Ontology: | SO:0100021 |
Author: |
Moxon SJ |
Number in seed: | 4 |
Number in full: | 425 |
Average length of the domain: | 221.00 aa |
Average identity of full alignment: | 29 % |
Average coverage of the sequence by the domain: | 68.99 % |
HMM information
HMM build commands: |
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 47079205 -E 1000 --cpu 4 HMM pfamseq
|
||||||||||||
Model details: |
|
||||||||||||
Model length: | 307 | ||||||||||||
Family (HMM) version: | 12 | ||||||||||||
Download: | download the raw HMM for this family |
Species distribution
Sunburst controls
HideWeight segments by...
Change the size of the sunburst
Colour assignments
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Selections
Align selected sequences to HMM
Generate a FASTA-format file
Clear selection
This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...
Tree controls
HideThe tree shows the occurrence of this domain across different species. More...
Loading...
Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.