Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
18  structures 5620  species 0  interactions 6360  sequences 14  architectures

Family: DNA_pol3_delta (PF06144)

Summary: DNA polymerase III, delta subunit

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "DNA polymerase III holoenzyme". More...

DNA polymerase III holoenzyme Edit Wikipedia article

Schematic picture of DNA polymerase III* (with subunits).

DNA polymerase III holoenzyme is the primary enzyme complex involved in prokaryotic DNA replication. It was discovered by Thomas Kornberg (son of Arthur Kornberg) and Malcolm Gefter in 1970. The complex has high processivity (i.e. the number of nucleotides added per binding event) and, specifically referring to the replication of the E.coli genome, works in conjunction with four other DNA polymerases (Pol I, Pol II, Pol IV, and Pol V). Being the primary holoenzyme involved in replication activity, the DNA Pol III holoenzyme also has proofreading capabilities that corrects replication mistakes by means of exonuclease activity reading 3'→5' and synthesizing 5'→3'. DNA Pol III is a component of the replisome, which is located at the replication fork.


The replisome is composed of the following:

  • 2 DNA Pol III enzymes, each comprising α, ε and θ subunits. (It has been proven that there is a third copy of Pol III at the replisome.[1])
    • the α subunit (encoded by the dnaE gene) has the polymerase activity.
    • the ε subunit (dnaQ) has 3'→5' exonuclease activity.
    • the θ subunit (holE) stimulates the ε subunit's proofreading.
  • 2 β units (dnaN) which act as sliding DNA clamps, they keep the polymerase bound to the DNA.
  • 2 Ï„ units (dnaX) which act to dimerize two of the core enzymes (α, ε, and θ subunits).
  • 1 γ unit (also dnaX) which acts as a clamp loader for the lagging strand Okazaki fragments, helping the two β subunits to form a unit and bind to DNA. The γ unit is made up of 5 γ subunits which include 3 γ subunits, 1 δ subunit (holA), and 1 δ' subunit (holB). The δ is involved in copying of the lagging strand.
  • Χ (holC) and Ψ (holD) which form a 1:1 complex and bind to γ or Ï„. X can also mediate the switch from RNA primer to DNA.[2]


DNA polymerase III synthesizes base pairs at a rate of around 1000 nucleotides per second.[3] DNA Pol III activity begins after strand separation at the origin of replication. Because DNA synthesis cannot start de novo, an RNA primer, complementary to part of the single-stranded DNA, is synthesized by primase (an RNA polymerase):

("!" for RNA, '"$" for DNA, "*" for polymerase)

         * * * *
! ! ! !  _ _ _ _    
_ _ _ _ | RNA   |   <--ribose (sugar)-phosphate backbone
G U A U | Pol   |   <--RNA primer
* * * * |_ _ _ _|   <--hydrogen bonding
C A T A G C A T C C <--template ssDNA (single-stranded DNA)
_ _ _ _ _ _ _ _ _ _ <--deoxyribose (sugar)-phosphate backbone
$ $ $ $ $ $ $ $ $ $

Addition onto 3'OH

As replication progresses and the replisome moves forward, DNA polymerase III arrives at the RNA primer and begins replicating the DNA, adding onto the 3'OH of the primer:

         * * * *
! ! ! !  _ _ _ _
_ _ _ _ | DNA   |   <--deoxyribose (sugar)-phosphate backbone
G U A U | Pol   |   <--RNA primer
* * * * |_III_ _|   <--hydrogen bonding
C A T A G C A T C C <--template ssDNA (single-stranded DNA)
_ _ _ _ _ _ _ _ _ _ <--deoxyribose (sugar)-phosphate backbone
$ $ $ $ $ $ $ $ $ $

Synthesis of DNA

DNA polymerase III will then synthesize a continuous or discontinuous strand of DNA, depending if this is occurring on the leading or lagging strand (Okazaki fragment) of the DNA. DNA polymerase III has a high processivity and therefore, synthesizes DNA very quickly. This high processivity is due in part to the β-clamps that "hold" onto the DNA strands.

                    * * * *
! ! ! ! $ $ $ $ $ $ _ _ _ _
_ _ _ _ _ _ _ _ _ _| DNA   |   <--deoxyribose (sugar)-phosphate backbone
G U A U C G T A G G| Pol   |   <--RNA primer
* * * * * * * * * *|_III_ _|   <--hydrogen bonding
C A T A G C A T C C <--template ssDNA (single-stranded DNA)
_ _ _ _ _ _ _ _ _ _ <--deoxyribose (sugar)-phosphate backbone
$ $ $ $ $ $ $ $ $ $

Removal of primer

After replication of the desired region, the RNA primer is removed by DNA polymerase I via the process of nick translation. The removal of the RNA primer allows DNA ligase to ligate the DNA-DNA nick between the new fragment and the previous strand. DNA polymerase I & III, along with many other enzymes are all required for the high fidelity, high-processivity of DNA replication.

See also


  1. ^ Reyes-Lamothe R, Sherratt D, Leake M (2010). "Stoichiometry and Architecture of Active DNA Replication Machinery in Escherichia Coli". Science. 328 (5977): 498–501. doi:10.1126/science.1185757. PMC 2859602. PMID 20413500.
  2. ^ Olson MW, Dallmann HG, McHenry CS (December 1995). "DnaX complex of Escherichia coli DNA polymerase III holoenzyme. The chi psi complex functions by increasing the affinity of tau and gamma for' to a physiologically relevant range". J. Biol. Chem. 270 (49): 29570–7. doi:10.1074/jbc.270.49.29570. PMID 7494000.
  3. ^ Kelman Z, O'Donnell M (1995). "DNA polymerase III holoenzyme: structure and function of a chromosomal replicating machine". Annu. Rev. Biochem. 64: 171–200. doi:10.1146/ PMID 7574479.

External links

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

DNA polymerase III, delta subunit Provide feedback

DNA polymerase III, delta subunit (EC is required for, along with delta' subunit, the assembly of the processivity factor beta(2) onto primed DNA in the DNA polymerase III holoenzyme-catalysed reaction [1]. The delta subunit is also known as HolA.

Literature references

  1. Song MS, Pham PT, Olson M, Carter JR, Franden MA, Schaaper RM, McHenry CS; , J Biol Chem 2001;276:35165-35175.: The delta and delta ' subunits of the DNA polymerase III holoenzyme are essential for initiation complex formation and processive elongation. PUBMED:11432857 EPMC:11432857

Internal database links

External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR010372

This entry represents the N-terminal domain of the DNA polymerase III, delta subunit ( EC ), which is required for, along with delta' subunit, the assembly of the processivity factor beta(2) onto primed DNA in the DNA polymerase III holoenzyme-catalysed reaction [ PUBMED:11432857 ]. The delta subunit is also known as HolA.

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan P-loop_NTPase (CL0023), which has the following description:

AAA family proteins often perform chaperone-like functions that assist in the assembly, operation, or disassembly of protein complexes [2].

The clan contains the following 245 members:

6PF2K AAA AAA-ATPase_like AAA_10 AAA_11 AAA_12 AAA_13 AAA_14 AAA_15 AAA_16 AAA_17 AAA_18 AAA_19 AAA_2 AAA_21 AAA_22 AAA_23 AAA_24 AAA_25 AAA_26 AAA_27 AAA_28 AAA_29 AAA_3 AAA_30 AAA_31 AAA_32 AAA_33 AAA_34 AAA_35 AAA_5 AAA_6 AAA_7 AAA_8 AAA_9 AAA_PrkA ABC_ATPase ABC_tran ABC_tran_Xtn Adeno_IVa2 Adenylsucc_synt ADK AFG1_ATPase AIG1 APS_kinase Arf ArsA_ATPase ATP-synt_ab ATP_bind_1 ATP_bind_2 ATPase ATPase_2 Bac_DnaA BCA_ABC_TP_C Beta-Casp bpMoxR BrxC_BrxD BrxL_ATPase Cas_Csn2 Cas_St_Csn2 CbiA CBP_BcsQ CDC73_C CENP-M CFTR_R CLP1_P CMS1 CoaE CobA_CobO_BtuR CobU cobW CPT CSM2 CTP_synth_N Cytidylate_kin Cytidylate_kin2 DAP3 DEAD DEAD_2 divDNAB DLIC DNA_pack_C DNA_pack_N DNA_pol3_delta DNA_pol3_delta2 DnaB_C dNK DO-GTPase1 DO-GTPase2 DUF1611 DUF2075 DUF2326 DUF2478 DUF257 DUF2813 DUF3584 DUF463 DUF4914 DUF5906 DUF6079 DUF815 DUF835 DUF87 DUF927 Dynamin_N Dynein_heavy Elong_Iki1 ELP6 ERCC3_RAD25_C Exonuc_V_gamma FeoB_N Fer4_NifH Flavi_DEAD FTHFS FtsK_SpoIIIE G-alpha Gal-3-0_sulfotr GBP GBP_C GpA_ATPase GpA_nuclease GTP_EFTU Gtr1_RagA Guanylate_kin GvpD_P-loop HDA2-3 Helicase_C Helicase_C_2 Helicase_C_4 Helicase_RecD HerA_C Herpes_Helicase Herpes_ori_bp Herpes_TK HydF_dimer HydF_tetramer Hydin_ADK IIGP IPPT IPT iSTAND IstB_IS21 KAP_NTPase KdpD Kinase-PPPase Kinesin KTI12 LAP1_C LpxK MCM MeaB MEDS Mg_chelatase Microtub_bd MipZ MMR_HSR1 MMR_HSR1_C MobB MukB Mur_ligase_M MutS_V Myosin_head NACHT NAT_N NB-ARC NOG1 NTPase_1 NTPase_P4 ORC3_N P-loop_TraG ParA Parvo_NS1 PAXNEB PduV-EutP PhoH PIF1 Ploopntkinase1 Ploopntkinase2 Ploopntkinase3 Podovirus_Gp16 Polyoma_lg_T_C Pox_A32 PPK2 PPV_E1_C PRK PSY3 Rad17 Rad51 Ras RecA ResIII RHD3_GTPase RhoGAP_pG1_pG2 RHSP RNA12 RNA_helicase Roc RsgA_GTPase RuvB_N SbcC_Walker_B SecA_DEAD Senescence Septin Sigma54_activ_2 Sigma54_activat SKI SMC_N SNF2-rel_dom SpoIVA_ATPase Spore_III_AA SRP54 SRPRB SulA Sulfotransfer_1 Sulfotransfer_2 Sulfotransfer_3 Sulfotransfer_4 Sulfotransfer_5 Sulphotransf SWI2_SNF2 T2SSE T4SS-DNA_transf TerL_ATPase Terminase_3 Terminase_6N Thymidylate_kin TIP49 TK TmcA_N TniB Torsin TraG-D_C tRNA_lig_kinase TrwB_AAD_bind TsaE UvrB UvrD-helicase UvrD_C UvrD_C_2 Viral_helicase1 VirC1 VirE YqeC Zeta_toxin Zot


We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets and the UniProtKB sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

Representative proteomes UniProt
Jalview View  View  View  View  View  View  View 
HTML View             
PP/heatmap 1            

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

Representative proteomes UniProt

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

Representative proteomes UniProt
Raw Stockholm Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...


This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Pfam-B_9452 (release 9.0)
Previous IDs: none
Type: Family
Sequence Ontology: SO:0100021
Author: Finn RD
Number in seed: 19
Number in full: 6360
Average length of the domain: 169.60 aa
Average identity of full alignment: 20 %
Average coverage of the sequence by the domain: 50.12 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 61295632 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 27.0 27.0
Trusted cut-off 27.0 27.0
Noise cut-off 26.9 26.9
Model length: 174
Family (HMM) version: 16
Download: download the raw HMM for this family

Species distribution

Sunburst controls


Weight segments by...

Change the size of the sunburst


Colour assignments

Archea Archea Eukaryota Eukaryota
Bacteria Bacteria Other sequences Other sequences
Viruses Viruses Unclassified Unclassified
Viroids Viroids Unclassified sequence Unclassified sequence


Align selected sequences to HMM

Generate a FASTA-format file

Clear selection

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls


The tree shows the occurrence of this domain across different species. More...


Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.


For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the DNA_pol3_delta domain has been found. There are 18 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein sequence.

Loading structure mapping...

AlphaFold Structure Predictions