Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
244  structures 5132  species 0  interactions 9231  sequences 67  architectures

Family: COX2 (PF00116)

Summary: Cytochrome C oxidase subunit II, periplasmic domain

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Cytochrome c oxidase subunit II". More...

Cytochrome c oxidase subunit II Edit Wikipedia article

Available structures
PDBOrtholog search: PDBe RCSB
AliasesCOX2, mitochondrially encoded cytochrome c oxidase II, COII, MTCO2, Cytochrome c oxidase subunit II, CO II
External IDsOMIM: 516040 MGI: 102503 HomoloGene: 5017 GeneCards: COX2
Gene location (Human)
Mitochondrial DNA (human)
Chr.Mitochondrial DNA (human)[1]
Bandn/aStart7,586 bp[1]
End8,269 bp[1]
RefSeq (mRNA)



RefSeq (protein)



Location (UCSC)Chr M: 0.01 – 0.01 MbChr M: 0.01 – 0.01 Mb
PubMed search[3][4]
View/Edit HumanView/Edit Mouse
Location of the MT-CO2 gene in the human mitochondrial genome. MT-CO2 is one of the three cytochrome c oxidase subunit mitochondrial genes (orange boxes).
Cytochrome c oxidase subunit II, transmembrane domain
1qle opm.png
Bacterial cytochrome c oxidase complex. Subunit II indicated by blue.
OPM superfamily4
OPM protein1v55
Cytochrome C oxidase subunit II, periplasmic domain

Cytochrome c oxidase subunit 2, also known as cytochrome c oxidase polypeptide II, is a protein that in humans is encoded by the MT-CO2 gene.[5] Cytochrome c oxidase subunit II, abbreviated COXII, COX2, COII, or MT-CO2, is the second subunit of cytochrome c oxidase.


The MT-CO2 gene is located on the p arm of mitochondrial DNA at position 12 and it spans 683 base pairs.[5] The MT-CO2 gene produces a 25.6 kDa protein composed of 227 amino acids.[6][7] MT-CO2 is a subunit of the enzyme Cytochrome c oxidase (EC[8][9] (Complex IV), an oligomeric enzymatic complex of the mitochondrial respiratory chain involved in the transfer of electrons from cytochrome c to oxygen. In eukaryotes this enzyme complex is located in the mitochondrial inner membrane; in aerobic prokaryotes it is found in the plasma membrane. The enzyme complex consists of 3-4 subunits (prokaryotes) to up to 13 polypeptides (mammals). The N-terminal domain of cytochrome C oxidase contains two transmembrane alpha-helices.[9][8] The structure of MT-CO2 is known to contain one redox center and a binuclear copper A center (CuA). The CuA is located in a conserved cysteine loop at 196 and 200 amino acid positions and conserved histidine at 204. Several bacterial MT-CO2 have a C-terminal extension that contains a covalently bound haem c.[10][11]


The MT-CO2 gene encodes for the second subunit of cytochrome c oxidase (complex IV), a component of the mitochondrial respiratory chain that catalyzes the reduction of oxygen to water. MT-CO2 is one of the three subunits which are responsible for the formation of the functional core of the cytochrome c oxidase. MT-CO2 plays an essential role in the transfer of electrons from cytochrome c to the bimetallic center of the catalytic subunit 1 by utilizing its binuclear copper A center. It contains two adjacent transmembrane regions in its N-terminus and the major part of the protein is exposed to the periplasmic or to the mitochondrial intermembrane space, respectively. MT-CO2 provides the substrate-binding site and contains the binuclear copper A center, probably the primary acceptor in cytochrome c oxidase.[12][13][5]

Clinical significance

Mitochondrial complex IV deficiency

Variants of MT-CO2 have been associated with the mitochondrial Complex IV deficiency, a deficiency in an enzyme complex of the mitochondrial respiratory chain that catalyzes the oxidation of cytochrome c utilizing molecular oxygen.[14] The deficiency is characterized by heterogeneous phenotypes ranging from isolated myopathy to severe multisystem disease affecting several tissues and organs. Other Clinical Manifestations include hypertrophic cardiomyopathy, hepatomegaly and liver dysfunction, hypotonia, muscle weakness, exercise intolerance, developmental delay, delayed motor development and mental retardation.[15] Mutations of MT-CO2 is also known to cause Leigh's disease, which may be caused by an abnormality or deficiency of cytochrome oxidase.[9][8]

A wide range of symptoms have been found in patients with pathogenic mutations in the MT-CO2 gene with the mitochonrdial Complex IV deficiency. A deletion mutation of a single nucleotide (7630delT) in the gene has been found to cause symptoms of reversible aphasia, right hemiparesis, hemianopsia, exercise intolerance, progressive mental impairment, and short stature.[16] Furthermore, a patient with a nonsense mutation (7896G>A) of the gene resulted in phenotypes such as short stature, low weight, microcephaly, skin abnormalities, severe hypotonia, and normal reflexes.[17] A novel heteroplasmic mutation (7587T>C) which altered the initiation codon of the MT-CO2 gene in patients have shown clinical manifestations such as progressive gait ataxia, cognitive impairment, bilateral optic atrophy, pigmentary retinopathy, a decrease in color vision, and mild distal-muscle wasting.[18]


Juvenile myopathy, encephalopathy, lactic acidosis, and stroke have also been associated with mutations in the MT-CO2 gene.[5]


MT-CO2 is known to interact with cytochrome c by the utilization of a lysine ring around the carboxyl containing heme edge of cytochrome c in MT-CO2, including glutamate 129, aspartate 132, and glutamate 19.


  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000198712 - Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000064354 - Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ a b c d "Entrez Gene: COX2 cytochrome c oxidase subunit II". This article incorporates text from this source, which is in the public domain.
  6. ^ Zong NC, Li H, Li H, Lam MP, Jimenez RC, Kim CS, Deng N, Kim AK, Choi JH, Zelaya I, Liem D, Meyer D, Odeberg J, Fang C, Lu HJ, Xu T, Weiss J, Duan H, Uhlen M, Yates JR, Apweiler R, Ge J, Hermjakob H, Ping P (October 2013). "Integration of cardiac proteome biology and medicine by a specialized knowledgebase". Circulation Research. 113 (9): 1043–53. doi:10.1161/CIRCRESAHA.113.301151. PMC 4076475. PMID 23965338.
  7. ^ "Cytochrome c oxidase subunit 2". Cardiac Organellar Protein Atlas Knowledgebase (COPaKB).
  8. ^ a b c Capaldi RA, Malatesta F, Darley-Usmar VM (July 1983). "Structure of cytochrome c oxidase". Biochimica et Biophysica Acta. 726 (2): 135–48. doi:10.1016/0304-4173(83)90003-4. PMID 6307356.
  9. ^ a b c García-Horsman JA, Barquera B, Rumbley J, Ma J, Gennis RB (September 1994). "The superfamily of heme-copper respiratory oxidases". Journal of Bacteriology. 176 (18): 5587–600. doi:10.1128/jb.176.18.5587-5600.1994. PMC 196760. PMID 8083153.
  10. ^ Capaldi RA (1990). "Structure and function of cytochrome c oxidase". Annual Review of Biochemistry. 59: 569–96. doi:10.1146/ PMID 2165384.
  11. ^ Hill BC (April 1993). "The sequence of electron carriers in the reaction of cytochrome c oxidase with oxygen". Journal of Bioenergetics and Biomembranes. 25 (2): 115–20. doi:10.1007/bf00762853. PMID 8389744.
  12. ^ "MT-CO2 - Cytochrome c oxidase subunit 2 - Homo sapiens (Human) - MT-CO2 gene & protein". Retrieved 2018-08-07. This article incorporates text available under the CC BY 4.0 license.
  13. ^ "UniProt: the universal protein knowledgebase". Nucleic Acids Research. 45 (D1): D158–D169. January 2017. doi:10.1093/nar/gkw1099. PMC 5210571. PMID 27899622.
  14. ^ Ostergaard E, Weraarpachai W, Ravn K, Born AP, Jønson L, Duno M, Wibrand F, Shoubridge EA, Vissing J (March 2015). "Mutations in COA3 cause isolated complex IV deficiency associated with neuropathy, exercise intolerance, obesity, and short stature". Journal of Medical Genetics. 52 (3): 203–7. doi:10.1136/jmedgenet-2014-102914. PMID 25604084.
  15. ^ "Mitochondrial complex IV deficiency".
  16. ^ Rossmanith W, Freilinger M, Roka J, Raffelsberger T, Moser-Thier K, Prayer D, Bernert G, Bittner RE (February 2008). "Isolated cytochrome c oxidase deficiency as a cause of MELAS". Journal of Medical Genetics. 45 (2): 117–21. doi:10.1136/jmg.2007.052076. PMID 18245391.
  17. ^ Campos Y, García-Redondo A, Fernández-Moreno MA, Martínez-Pardo M, Goda G, Rubio JC, Martín MA, del Hoyo P, Cabello A, Bornstein B, Garesse R, Arenas J (September 2001). "Early-onset multisystem mitochondrial disorder caused by a nonsense mutation in the mitochondrial DNA cytochrome C oxidase II gene". Annals of Neurology. 50 (3): 409–13. doi:10.1002/ana.1141. PMID 11558799.
  18. ^ Clark KM, Taylor RW, Johnson MA, Chinnery PF, Chrzanowska-Lightowlers ZM, Andrews RM, Nelson IP, Wood NW, Lamont PJ, Hanna MG, Lightowlers RN, Turnbull DM (May 1999). "An mtDNA mutation in the initiation codon of the cytochrome C oxidase subunit II gene results in lower levels of the protein and a mitochondrial encephalomyopathy". American Journal of Human Genetics. 64 (5): 1330–9. doi:10.1086/302361. PMC 1377869. PMID 10205264.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Cytochrome C oxidase subunit II, periplasmic domain Provide feedback

No Pfam abstract.

Literature references

  1. Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S; , Science 1996;272:1136-1144.: The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 A. PUBMED:8638158 EPMC:8638158

Internal database links

External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR002429

Cytochrome c oxidase ( EC ) [ PUBMED:6307356 , PUBMED:8083153 ] is an oligomeric enzymatic complex which is a component of the respiratory chain and is involved in the transfer of electrons from cytochrome c to oxygen. In eukaryotes this enzyme complex is located in the mitochondrial inner membrane; in aerobic prokaryotes it is found in the plasma membrane. The number of polypeptides in the complex ranges from 3-4 (prokaryotes), up to 13(mammals). In Archaea, a cytochrome-c-type oxidase from Natronobacterium (cytochrome ba3) has been shown to consists of four subunits [ PUBMED:9428682 ].

Subunit 2 (CO II) transfers the electrons from cytochrome c to the catalytic subunit 1. It contains two adjacent transmembrane regions in its N terminus and the major part of the protein is exposed to the periplasmic or to the mitochondrial intermembrane space, respectively. CO II provides the substrate-binding site and contains a copper centre called Cu(A), probably the primary acceptor in cytochrome c oxidase. An exception is the corresponding subunit of the cbb3-type oxidase which lacks the copper A redox-centre. Several bacterial CO II have a C-terminal extension that contains a covalently bound haem c.

It has been shown [ PUBMED:1324168 , PUBMED:1324835 ] that nitrous oxide reductase (gene nosZ) of Pseudomonas has sequence similarity in its C terminus to CO II. This enzyme is part of the bacterial respiratory system which is activated under anaerobic conditions in the presence of nitrate or nitrous oxide. NosZ is a periplasmic homodimer that contains a dinuclear copper centre, probably located in a 3-dimensional fold similar to the cupredoxin-like fold that has been suggested for the copper-binding site of CO II [ PUBMED:1324168 ].

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan CU_oxidase (CL0026), which has the following description:

Many of the proteins in this family contain multiple similar copies of this plastocyanin-like domain.

The clan contains the following 15 members:

Copper-bind COX2 COX_ARM Cu-oxidase Cu-oxidase_2 Cu-oxidase_3 Cu_bind_like Cupredoxin_1 CzcE DP-EP Ephrin hGDE_N PAD_N PixA SoxE


We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets and the UniProtKB sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

Representative proteomes UniProt
Jalview View  View  View  View  View  View  View 
HTML View             
PP/heatmap 1            

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

Representative proteomes UniProt

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

Representative proteomes UniProt
Raw Stockholm Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...


This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Prosite
Previous IDs: none
Type: Domain
Sequence Ontology: SO:0000417
Author: Sonnhammer ELL , Griffiths-Jones SR
Number in seed: 11
Number in full: 9231
Average length of the domain: 102.40 aa
Average identity of full alignment: 31 %
Average coverage of the sequence by the domain: 32.88 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 57096847 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 22.0 22.0
Trusted cut-off 22.0 22.0
Noise cut-off 21.9 21.9
Model length: 120
Family (HMM) version: 22
Download: download the raw HMM for this family

Species distribution

Sunburst controls


Weight segments by...

Change the size of the sunburst


Colour assignments

Archea Archea Eukaryota Eukaryota
Bacteria Bacteria Other sequences Other sequences
Viruses Viruses Unclassified Unclassified
Viroids Viroids Unclassified sequence Unclassified sequence


Align selected sequences to HMM

Generate a FASTA-format file

Clear selection

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls


The tree shows the occurrence of this domain across different species. More...


Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.


For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the COX2 domain has been found. There are 244 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein sequence.

Loading structure mapping...