Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
239  structures 8556  species 0  interactions 83435  sequences 1007  architectures

Family: E1-E2_ATPase (PF00122)

Summary: E1-E2 ATPase

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Proton ATPase". More...

Proton ATPase Edit Wikipedia article

In the field of enzymology, a proton ATPase is an enzyme that catalyzes the following chemical reaction:

+ H+
in ADP + phosphate + H+

The 3 substrates of this enzyme are ATP, H
, and H+
, whereas its 3 products are ADP, phosphate, and H+

Proton ATPases are divided into three groups[1] as outlined below:

P-type proton ATPase

P-type ATPases form a covalent phosphorylated (hence the symbol ’P') intermediate as part of its reaction cycle. P-type ATPases undergo major conformational changes during the catalytic cycle. P-type ATPases are not evolutionary related to V- and F-type ATPases.[1]

Plasma membrane H+-ATPase

P-type proton ATPase[2][3][4][5] (or plasma membrane H+
) is found in the plasma membranes of eubacteria, archaea, protozoa, fungi and plants. Here it serves as a functional equivalent to the Na+/K+ ATPase of animal cells; i.e. it energizes the plasma membrane by forming an electrochemical gradient of protons (Na+ in animal cells), that in turn drives secondary active transport processes across the membrane. The plasma membrane H+-ATPase is a P3A ATPase with a single polypeptide of 70-100 kDa.

Gastric H+/K+ ATPase

Animals have a gastric hydrogen potassium ATPase or H+/K+ ATPase that belongs to the P-type ATPase family and functions as an electroneutral proton pump. This pump is found in the plasma membrane of cells in the gastric mucosa and functions to acidify the stomach.[6] This enzyme is a P2C ATPase, characterized by having a supporting beta-subunit, and is closely related to the Na+/K+ ATPase.

V-type proton ATPase

V-type proton ATPase[7][8][9] (or V-ATPase) translocate protons into intracellular organelles other than mitochondria and chloroplasts, but in certain cell types they are also found in the plasma membrane. V-type ATPases acidify the lumen of the vacuole (hence the symbol 'V') of fungi and plants, and that of the lysosome in animal cells. Furthermore, they are found in endosomes, clathrin coated vesicles, hormone storage granules, secretory granules, Golgi vesicles and in the plasma membrane of a variety of animal cells. Like F-type ATPases, V-type ATPases are composed of multiple subunits and carry out rotary catalysis.[10] The reaction cycle involves tight binding of ATP but proceeds without formation of a covalent phosphorylated intermediate. V-type ATPases are evolutionary related to F-type ATPases.[11]

F-type proton ATPase

F-type proton ATPase[12][13] (or F-ATPase) typically operates as an ATP synthase that dissipates a proton gradient rather than generating one; i.e. protons flow in the reverse direction compared to V-type ATPases. In eubacteria, F-type ATPases are found in plasma membranes. In eukaryotes, they are found in the mitochondrial inner membranes and in chloroplast thylakoid membranes. Like V-type ATPases, F-type ATPases are composed of multiple subunits and carry out rotary catalysis. The reaction cycle involves tight binding of ATP but proceeds without formation of a covalent phosphorylated intermediate. F-type ATPases are evolutionary related to V-type ATPases.[11]


  1. ^ a b Pedersen PL, Carafoli E (1987). "Ion motive ATPases. I. Ubiquity, properties, and significance to cell function". Trends in Biochemical Sciences. 12: 146–50. doi:10.1016/0968-0004(87)90071-5.
  2. ^ Goffeau A, Slayman CW (December 1981). "The proton-translocating ATPase of the fungal plasma membrane". Biochimica et Biophysica Acta. 639 (3–4): 197–223. doi:10.1016/0304-4173(81)90010-0. PMID 6461354.
  3. ^ Morsomme P, Slayman CW, Goffeau A (November 2000). "Mutagenic study of the structure, function and biogenesis of the yeast plasma membrane H(+)-ATPase". Biochimica et Biophysica Acta. 1469 (3): 133–57. doi:10.1016/S0304-4157(00)00015-0. PMID 11063881.
  4. ^ Palmgren MG (June 2001). "PLANT PLASMA MEMBRANE H+-ATPases: Powerhouses for Nutrient Uptake". Annual Review of Plant Physiology and Plant Molecular Biology. 52: 817–845. doi:10.1146/annurev.arplant.52.1.817. PMID 11337417.
  5. ^ Morth JP, Pedersen BP, Buch-Pedersen MJ, Andersen JP, Vilsen B, Palmgren MG, Nissen P (January 2011). "A structural overview of the plasma membrane Na+,K+-ATPase and H+-ATPase ion pumps". Nature Reviews. Molecular Cell Biology. 12 (1): 60–70. doi:10.1038/nrm3031. PMID 21179061.
  6. ^ Sachs G, Shin JM, Briving C, Wallmark B, Hersey S (1995). "The pharmacology of the gastric acid pump: the H+,K+ ATPase". Annu Rev Pharmacol Toxicol. 35: 277–305. doi:10.1146/ PMID 7598495.
  7. ^ Beyenbach KW, Wieczorek H (February 2006). "The V-type H+ ATPase: molecular structure and function, physiological roles and regulation". The Journal of Experimental Biology. 209 (Pt 4): 577–89. doi:10.1242/jeb.02014. PMID 16449553.
  8. ^ Nelson N (November 1992). "The vacuolar H(+)-ATPase--one of the most fundamental ion pumps in nature". The Journal of Experimental Biology. 172: 19–27. PMID 1337091.
  9. ^ Marshansky V, Rubinstein JL, Grüber G (June 2014). "Eukaryotic V-ATPase: novel structural findings and functional insights". Biochimica et Biophysica Acta. 1837 (6): 857–79. doi:10.1016/j.bbabio.2014.01.018. PMID 24508215.
  10. ^ Stewart AG, Laming EM, Sobti M, Stock D (April 2014). "Rotary ATPases--dynamic molecular machines". Current Opinion in Structural Biology. 25: 40–8. doi:10.1016/ PMID 24878343.
  11. ^ a b Mulkidjanian AY, Makarova KS, Galperin MY, Koonin EV (November 2007). "Inventing the dynamo machine: the evolution of the F-type and V-type ATPases". Nature Reviews. Microbiology. 5 (11): 892–9. doi:10.1038/nrmicro1767. PMID 17938630.
  12. ^ Boyer PD (1997). "The ATP synthase--a splendid molecular machine". Annual Review of Biochemistry. 66: 717–49. doi:10.1146/annurev.biochem.66.1.717. PMID 9242922.
  13. ^ Junge W, Nelson N (2015). "ATP synthase". Annual Review of Biochemistry. 84: 631–57. doi:10.1146/annurev-biochem-060614-034124. PMID 25839341.

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

E1-E2 ATPase Provide feedback

No Pfam abstract.

Internal database links

External database links

This tab holds annotation information from the InterPro database.

No InterPro data for this Pfam family.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...


We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets and the UniProtKB sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

Representative proteomes UniProt
Jalview View  View  View  View  View  View  View 
HTML View             
PP/heatmap 1            

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

Representative proteomes UniProt

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

Representative proteomes UniProt
Raw Stockholm Download   Download   Download   Download   Download   Download    
Gzipped Download   Download   Download   Download   Download   Download    

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...


This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Prosite
Previous IDs: none
Type: Family
Sequence Ontology: SO:0100021
Author: Sonnhammer ELL , Bateman A
Number in seed: 70
Number in full: 83435
Average length of the domain: 186.10 aa
Average identity of full alignment: 23 %
Average coverage of the sequence by the domain: 20.99 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 57096847 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 28.1 28.1
Trusted cut-off 28.1 28.1
Noise cut-off 28.0 28.0
Model length: 181
Family (HMM) version: 22
Download: download the raw HMM for this family

Species distribution

Sunburst controls


Weight segments by...

Change the size of the sunburst


Colour assignments

Archea Archea Eukaryota Eukaryota
Bacteria Bacteria Other sequences Other sequences
Viruses Viruses Unclassified Unclassified
Viroids Viroids Unclassified sequence Unclassified sequence


Align selected sequences to HMM

Generate a FASTA-format file

Clear selection

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls


The tree shows the occurrence of this domain across different species. More...


Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.


For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the E1-E2_ATPase domain has been found. There are 239 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein sequence.

Loading structure mapping...