Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
214  structures 8791  species 2  interactions 11608  sequences 34  architectures

Family: Cpn10 (PF00166)

Summary: Chaperonin 10 Kd subunit

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "GroES". More...

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Chaperonin 10 Kd subunit Provide feedback

This family contains GroES and Gp31-like chaperonins. Gp31 is a functional co-chaperonin that is required for the folding and assembly of Gp23, a major capsid protein, during phage morphogenesis [1].

Literature references

  1. Hunt JF, van der Vies SM, Henry L, Deisenhofer J; , Cell 1997;90:361-371.: Structural adaptations in the specialized bacteriophage T4 co-chaperonin Gp31 expand the size of the Anfinsen cage. PUBMED:9244309 EPMC:9244309


External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR020818

The chaperonins are 'helper' molecules required for correct folding and subsequent assembly of some proteins [PUBMED:1349837]. These are required for normal cell growth [PUBMED:2897629], and are stress-induced, acting to stabilise or protect disassembled polypeptides under heat-shock conditions. Type I chaperonins present in eubacteria, mitochondria and chloroplasts require the concerted action of 2 proteins, chaperonin 60 (cpn60) and chaperonin 10 (cpn10) [PUBMED:12354603].

The 10 kDa chaperonin (cpn10 - or groES in bacteria) exists as a ring-shaped oligomer of between six to eight identical subunits, while the 60 kDa chaperonin (cpn60 - or groEL in bacteria) forms a structure comprising 2 stacked rings, each ring containing 7 identical subunits [PUBMED:2897629]. These ring structures assemble by self-stimulation in the presence of Mg2+-ATP. The central cavity of the cylindrical cpn60 tetradecamer provides as isolated environment for protein folding whilst cpn-10 binds to cpn-60 and synchronizes the release of the folded protein in an Mg2+-ATP dependent manner [PUBMED:1350777]. The binding of cpn10 to cpn60 inhibits the weak ATPase activity of cpn60.

Escherichia coli GroES has also been shown to bind ATP cooperatively, and with an affinity comparable to that of GroEL [PUBMED:7901771]. Each GroEL subunit contains three structurally distinct domains: an apical, an intermediate and an equatorial domain. The apical domain contains the binding sites for both GroES and the unfolded protein substrate. The equatorial domain contains the ATP-binding site and most of the oligomeric contacts. The intermediate domain links the apical and equatorial domains and transfers allosteric information between them. The GroEL oligomer is a tetradecamer, cylindrically shaped, that is organised in two heptameric rings stacked back to back. Each GroEL ring contains a central cavity, known as the 'Anfinsen cage', that provides an isolated environment for protein folding. The identical 10 kDa subunits of GroES form a dome-like heptameric oligomer in solution. ATP binding to GroES may be important in charging the seven subunits of the interacting GroEL ring with ATP, to facilitate cooperative ATP binding and hydrolysis for substrate protein release.

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan GroES (CL0296), which has the following description:

This superfamily includes the GroES protein as well as the N-terminal GroES-like domain from Alcohol dehydrogenase.

The clan contains the following 3 members:

ADH_N ADH_N_2 Cpn10

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the UniProtKB sequence database, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(39)
Full
(11608)
Representative proteomes UniProt
(30158)
NCBI
(24029)
Meta
(2862)
RP15
(3178)
RP35
(7500)
RP55
(10911)
RP75
(14908)
Jalview View  View  View  View  View  View  View  View  View 
HTML View                 
PP/heatmap 1                

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(39)
Full
(11608)
Representative proteomes UniProt
(30158)
NCBI
(24029)
Meta
(2862)
RP15
(3178)
RP35
(7500)
RP55
(10911)
RP75
(14908)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(39)
Full
(11608)
Representative proteomes UniProt
(30158)
NCBI
(24029)
Meta
(2862)
RP15
(3178)
RP35
(7500)
RP55
(10911)
RP75
(14908)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Prosite
Previous IDs: cpn10;
Type: Domain
Sequence Ontology: SO:0000417
Author: Sonnhammer ELL , Finn RD
Number in seed: 39
Number in full: 11608
Average length of the domain: 91.40 aa
Average identity of full alignment: 43 %
Average coverage of the sequence by the domain: 87.47 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 45638612 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 21.1 21.1
Trusted cut-off 21.2 21.1
Noise cut-off 21.0 21.0
Model length: 93
Family (HMM) version: 21
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Hide

Weight segments by...


Change the size of the sunburst

Small
Large

Colour assignments

Archea Archea Eukaryota Eukaryota
Bacteria Bacteria Other sequences Other sequences
Viruses Viruses Unclassified Unclassified
Viroids Viroids Unclassified sequence Unclassified sequence

Selections

Align selected sequences to HMM

Generate a FASTA-format file

Clear selection

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Interactions

There are 2 interactions for this family. More...

Cpn10 Cpn60_TCP1

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the Cpn10 domain has been found. There are 214 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein sequence.

Loading structure mapping...