Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
273  structures 4747  species 0  interactions 41583  sequences 1210  architectures

Family: Guanylate_cyc (PF00211)

Summary: Adenylate and Guanylate cyclase catalytic domain

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Adenylyl cyclase". More...

Adenylyl cyclase Edit Wikipedia article

Adenylyl cyclase
1pk0.jpg
Adenylate cyclase (calmodulin sensitive) trimer, Bacillus anthracis
Epinephrine binds its receptor, that associates with a heterotrimeric G protein. The G protein associates with adenylyl cyclase, which converts ATP to cAMP, spreading the signal.[1]
Identifiers
EC no.4.6.1.1
CAS no.9012-42-4
Databases
IntEnzIntEnz view
BRENDABRENDA entry
ExPASyNiceZyme view
KEGGKEGG entry
MetaCycmetabolic pathway
PRIAMprofile
PDB structuresRCSB PDB PDBe PDBsum
Gene OntologyAmiGO / QuickGO

Adenylyl cyclase (EC 4.6.1.1, also commonly known as adenyl cyclase and adenylate cyclase, abbreviated AC) is an enzyme with key regulatory roles in essentially all cells.[2] It is the most polyphyletic known enzyme: six distinct classes have been described, all catalyzing the same reaction but representing unrelated gene families with no known sequence or structural homology.[3] The best known class of adenylyl cyclases is class III or AC-III (Roman numerals are used for classes). AC-III occurs widely in eukaryotes and has important roles in many human tissues.[4]

All classes of adenylyl cyclase catalyse the conversion of adenosine triphosphate (ATP) to 3',5'-cyclic AMP (cAMP) and pyrophosphate.[4] Magnesium ions are generally required and appear to be closely involved in the enzymatic mechanism. The cAMP produced by AC then serves as a regulatory signal via specific cAMP-binding proteins, either transcription factors, enzymes (e.g., cAMP-dependent kinases), or ion transporters.

Adenylyl cyclase catalyzes the conversion of ATP to 3',5'-cyclic AMP.

Classes

Class I

Adenylate cyclase, class-I
Identifiers
SymbolAdenylate_cycl
PfamPF01295
InterProIPR000274
PROSITEPDOC00837

The first class of adenylyl cyclases occur in many bacteria including E. coli (as CyaA P00936 [unrelated to the Class II enzyme]).[4] This was the first class of AC to be characterized. It was observed that E. coli deprived of glucose produce cAMP that serves as an internal signal to activate expression of genes for importing and metabolizing other sugars. cAMP exerts this effect by binding the transcription factor CRP, also known as CAP. Class I AC's are large cytosolic enzymes (~100 kDa) with a large regulatory domain (~50 kDa) that indirectly senses glucose levels. As of 2012, no crystal structure is available for class I AC.

Some indirect structural information is available for this class. It is known that the N-terminal half is the catalytic portion, and that it requires two Mg2+ ions. S103, S113, D114, D116 and W118 are the five absolutely essential residues. The class I catalytic domain (Pfam PF12633) belongs to the same superfamily (Pfam CL0260) as the palm domain of DNA polymerase beta (Pfam PF18765). Aligning its sequence onto the structure onto a related archaeal CCA tRNA nucleotidyltransferase (PDB: 1R89​) allows for assignment of the residues to specific functions: γ-phosphate binding, structural stabilization, DxD motif for metal ion binding, and finally ribose binding.[5]

Class II

These adenylyl cyclases are toxins secreted by pathogenic bacteria such as Bacillus anthracis, Bordetella pertussis, Pseudomonas aeruginosa, and Vibrio vulnificus during infections.[6] These bacteria also secrete proteins that enable the AC-II to enter host cells, where the exogenous AC activity undermines normal cellular processes. The genes for Class II ACs are known as cyaA, one of which is anthrax toxin. Several crystal structures are known for AC-II enzymes.[7][8][9]

Class III

Adenylyl cyclase class-3/guanylyl cyclase
Identifiers
SymbolGuanylate_cyc
PfamPF00211
Pfam clanCL0276
InterProIPR001054
SMARTSM00044
PROSITEPS50125
SCOP21tl7 / SCOPe / SUPFAM
TCDB8.A.85
OPM superfamily546
OPM protein6r3q

These adenylyl cyclases are the most familiar based on extensive study due to their important roles in human health. They are also found in some bacteria, notably Mycobacterium tuberculosis where they appear to have a key role in pathogenesis. Most AC-III's are integral membrane proteins involved in transducing extracellular signals into intracellular responses. A Nobel Prize was awarded to Earl Sutherland in 1971 for discovering the key role of AC-III in human liver, where adrenaline indirectly stimulates AC to mobilize stored energy in the "fight or flight" response. The effect of adrenaline is via a G protein signaling cascade, which transmits chemical signals from outside the cell across the membrane to the inside of the cell (cytoplasm). The outside signal (in this case, adrenaline) binds to a receptor, which transmits a signal to the G protein, which transmits a signal to adenylyl cyclase, which transmits a signal by converting adenosine triphosphate to cyclic adenosine monophosphate (cAMP). cAMP is known as a second messenger.[10]

Cyclic AMP is an important molecule in eukaryotic signal transduction, a so-called second messenger. Adenylyl cyclases are often activated or inhibited by G proteins, which are coupled to membrane receptors and thus can respond to hormonal or other stimuli.[11] Following activation of adenylyl cyclase, the resulting cAMP acts as a second messenger by interacting with and regulating other proteins such as protein kinase A and cyclic nucleotide-gated ion channels.[11]

Photoactivated adenylyl cyclase (PAC) was discovered in Euglena gracilis and can be expressed in other organisms through genetic manipulation. Shining blue light on a cell containing PAC activates it and abruptly increases the rate of conversion of ATP to cAMP. This is a useful technique for researchers in neuroscience because it allows them to quickly increase the intracellular cAMP levels in particular neurons, and to study the effect of that increase in neural activity on the behavior of the organism.[12] A green-light activated rhodopsin adenylyl cyclase (CaRhAC) has recently been engineered by modifying the nuclecotide binding pocket of rhodopsin guanylyl cyclase.

Structure

Structure of adenylyl cyclase

Most class III adenylyl cyclases are transmembrane proteins with 12 transmembrane segments. The protein is organized with 6 transmembrane segments, then the C1 cytoplasmic domain, then another 6 membrane segments, and then a second cytoplasmic domain called C2. The important parts for function are the N-terminus and the C1 and C2 regions. The C1a and C2a subdomains are homologous and form an intramolecular 'dimer' that forms the active site. In Mycobacterium tuberculosis and many other bacterial cases, the AC-III polypeptide is only half as long, comprising one 6-transmembrane domain followed by a cytoplasmic domain, but two of these form a functional homodimer that resembles the mammalian architecture with two active sites. In non-animal class III ACs, the catalytic cytoplasmic domain is seen associated with other (not necessarily transmembrane) domains.[13]

Class III adenylyl cyclase domains can be further divided into four subfamilies, termed class IIIa through IIId. Animal membrane-bound ACs belong to class IIIa.[13]: 1087 

Mechanism

The reaction happens with two metal cofactors (Mg or Mn) coordinated to the two aspartate residues on C1. They perform a nucleophilic attack of the 3'-OH group of the ribose on the α-phosphoryl group of ATP. The two lysine and aspartate residues on C2 selects ATP over GTP for the substrate, so that the enzyme is not a guanylyl cyclase. A pair of arginine and asparagine residues on C2 stabilizes the transition state. In many proteins, these residues are nevertheless mutated while retaining the adenylyl cyclase activity.[13]

Types

There are ten known isoforms of adenylyl cyclases in mammals:

These are also sometimes called simply AC1, AC2, etc., and, somewhat confusingly, sometimes Roman numerals are used for these isoforms that all belong to the overall AC class III. They differ mainly in how they are regulated, and are differentially expressed in various tissues throughout mammalian development.

Regulation

Adenylyl cyclase is regulated by G proteins, which can be found in the monomeric form or the heterotrimeric form, consisting of three subunits.[2][3][4] Adenylyl cyclase activity is controlled by heterotrimeric G proteins.[2][3][4] The inactive or inhibitory form exists when the complex consists of alpha, beta, and gamma subunits, with GDP bound to the alpha subunit.[2][4] In order to become active, a ligand must bind to the receptor and cause a conformational change.[2] This conformational change causes the alpha subunit to dissociate from the complex and become bound to GTP.[2] This G-alpha-GTP complex then binds to adenylyl cyclase and causes activation and the release of cAMP.[2] Since a good signal requires the help of enzymes, which turn on and off signals quickly, there must also be a mechanism in which adenylyl cyclase deactivates and inhibits cAMP.[2] The deactivation of the active G-alpha-GTP complex is accomplished rapidly by GTP hydrolysis due to the reaction being catalyzed by the intrinsic enzymatic activity of GTPase located in the alpha subunit.[2] It is also regulated by forskolin,[11] as well as other isoform-specific effectors:

  • Isoforms I, III, and VIII are also stimulated by Ca2+/calmodulin.[11]
  • Isoforms V and VI are inhibited by Ca2+ in a calmodulin-independent manner.[11]
  • Isoforms II, IV and IX are stimulated by alpha subunit of the G protein.[11]
  • Isoforms I, V and VI are most clearly inhibited by Gi, while other isoforms show less dual regulation by the inhibitory G protein.[11]
  • Soluble AC (sAC) is not a transmembrane form and is not regulated by G proteins or forskolin, instead acts as a bicarbonate/pH sensor. It is anchored at various locations within the cell and, with phosphodiesterases, forms local cAMP signalling domains.[14]

In neurons, calcium-sensitive adenylyl cyclases are located next to calcium ion channels for faster reaction to Ca2+ influx; they are suspected of playing an important role in learning processes. This is supported by the fact that adenylyl cyclases are coincidence detectors, meaning that they are activated only by several different signals occurring together.[15] In peripheral cells and tissues adenylyl cyclases appear to form molecular complexes with specific receptors and other signaling proteins in an isoform-specific manner.

Function

Adenylyl cyclase has been implicated in memory formation, functioning as a coincidence detector.[11][15][16][17][18]

Class IV

Adenylyl cyclase CyaB
Identifiers
SymbolCyaB
InterProIPR008173
CATH1YEM
SCOP22ACA / SCOPe / SUPFAM
CDDcd07890

AC-IV was first reported in the bacterium Aeromonas hydrophila, and the structure of the AC-IV from Yersinia pestis has been reported. These are the smallest of the AC enzyme classes; the AC-IV (CyaB) from Yersinia is a dimer of 19 kDa subunits with no known regulatory components (PDB: 2FJT​).[19] AC-IV forms a superfamily with mamallian thiamine-triphosphatase called CYTH (CyaB, thiamine triphosphatase).[20]

Classes V and VI

AC Class VI (DUF3095)
Identifiers
SymbolDUF3095
PfamPF11294
InterProIPR021445
contact prediction

These forms of AC have been reported in specific bacteria (Prevotella ruminicola O68902 and Rhizobium etli Q8KY20, respectively) and have not been extensively characterized.[21] There are a few extra members (~400 in Pfam) known to be in class VI. Class VI enzymes possess a catalytic core similar to the one in Class III.[22]

Additional images

References

  1. ^ "PDB101: Molecule of the Month: G Proteins". RCSB: PDB-101. Retrieved 24 August 2020.
  2. ^ a b c d e f g h i Hancock, John (2010). Cell Signaling. pp. 189–195.
  3. ^ a b c Sadana R, Dessauer CW (February 2009). "Physiological roles for G protein-regulated adenylyl cyclase isoforms: insights from knockout and overexpression studies". Neuro-Signals. 17 (1): 5–22. doi:10.1159/000166277. PMC 2790773. PMID 18948702.
  4. ^ a b c d e f Zhang G, Liu Y, Ruoho AE, Hurley JH (March 1997). "Structure of the adenylyl cyclase catalytic core". Nature. 386 (6622): 247–53. Bibcode:1997Natur.386..247Z. doi:10.1038/386247a0. PMID 9069282. S2CID 4329051.
  5. ^ Linder JU (November 2008). "Structure-function relationships in Escherichia coli adenylate cyclase". The Biochemical Journal. 415 (3): 449–54. doi:10.1042/BJ20080350. PMID 18620542. (alignment)
  6. ^ Ahuja N, Kumar P, Bhatnagar R (2004). "The adenylate cyclase toxins". Critical Reviews in Microbiology. 30 (3): 187–96. doi:10.1080/10408410490468795. PMID 15490970. S2CID 23893594.
  7. ^ Khanppnavar B, Datta S (September 2018). "Crystal structure and substrate specificity of ExoY, a unique T3SS mediated secreted nucleotidyl cyclase toxin from Pseudomonas aeruginosa". Biochimica et Biophysica Acta (BBA) - General Subjects. 1862 (9): 2090–2103. doi:10.1016/j.bbagen.2018.05.021. PMID 29859257.
  8. ^ Guo Q, Shen Y, Lee YS, Gibbs CS, Mrksich M, Tang WJ (September 2005). "Structural basis for the interaction of Bordetella pertussis adenylyl cyclase toxin with calmodulin". The EMBO Journal. 24 (18): 3190–201. doi:10.1038/sj.emboj.7600800. PMC 1224690. PMID 16138079.
  9. ^ Drum CL, Yan SZ, Bard J, Shen YQ, Lu D, Soelaiman S, Grabarek Z, Bohm A, Tang WJ (January 2002). "Structural basis for the activation of anthrax adenylyl cyclase exotoxin by calmodulin". Nature. 415 (6870): 396–402. Bibcode:2002Natur.415..396D. doi:10.1038/415396a. PMID 11807546. S2CID 773562.
  10. ^ Reece J, Campbell N (2002). Biology. San Francisco: Benjamin Cummings. pp. 207. ISBN 978-0-8053-6624-2.
  11. ^ a b c d e f g h Hanoune J, Defer N (April 2001). "Regulation and role of adenylyl cyclase isoforms". Annual Review of Pharmacology and Toxicology. 41 (1): 145–74. doi:10.1146/annurev.pharmtox.41.1.145. PMID 11264454.
  12. ^ Schröder-Lang S, Schwärzel M, Seifert R, Strünker T, Kateriya S, Looser J, Watanabe M, Kaupp UB, Hegemann P, Nagel G (January 2007). "Fast manipulation of cellular cAMP level by light in vivo" (PDF). Nature Methods. 4 (1): 39–42. doi:10.1038/nmeth975. PMID 17128267. S2CID 10616442.
  13. ^ a b c Linder JU, Schultz JE (December 2003). "The class III adenylyl cyclases: multi-purpose signalling modules". Cellular Signalling. 15 (12): 1081–9. doi:10.1016/s0898-6568(03)00130-x. PMID 14575863.
  14. ^ Rahman, N; Buck, J; Levin, LR (2013). "pH sensing via bicarbonate-regulated "soluble" adenylyl cyclase (sAC)". Front Physiol. 4: 343. doi:10.3389/fphys.2013.00343. PMC 3838963. PMID 24324443.
  15. ^ a b Hogan DA, Muhlschlegel FA (December 2011). "Candida albicans developmental regulation: adenylyl cyclase as a coincidence detector of parallel signals". Current Opinion in Microbiology. 14 (6): 682–6. doi:10.1016/j.mib.2011.09.014. PMID 22014725.
  16. ^ Willoughby D, Cooper DM (July 2007). "Organization and Ca2+ regulation of adenylyl cyclases in cAMP microdomains". Physiological Reviews. 87 (3): 965–1010. CiteSeerX 10.1.1.336.3746. doi:10.1152/physrev.00049.2006. PMID 17615394.
  17. ^ Mons N, Guillou JL, Jaffard R (April 1999). "The role of Ca2+/calmodulin-stimulable adenylyl cyclases as molecular coincidence detectors in memory formation". Cellular and Molecular Life Sciences. 55 (4): 525–33. doi:10.1007/s000180050311. PMID 10357223. S2CID 10849274.
  18. ^ Neve KA, Seamans JK, Trantham-Davidson H (August 2004). "Dopamine receptor signaling". Journal of Receptor and Signal Transduction Research. 24 (3): 165–205. CiteSeerX 10.1.1.465.5011. doi:10.1081/RRS-200029981. PMID 15521361. S2CID 12407397.
  19. ^ Gallagher DT, Smith NN, Kim SK, Heroux A, Robinson H, Reddy PT (September 2006). "Structure of the class IV adenylyl cyclase reveals a novel fold". Journal of Molecular Biology. 362 (1): 114–22. doi:10.1016/j.jmb.2006.07.008. PMID 16905149.
  20. ^ Kohn G, Delvaux D, Lakaye B, Servais AC, Scholer G, Fillet M, Elias B, Derochette JM, Crommen J, Wins P, Bettendorff L (2012). "High inorganic triphosphatase activities in bacteria and mammalian cells: identification of the enzymes involved". PLOS ONE. 7 (9): e43879. Bibcode:2012PLoSO...743879K. doi:10.1371/journal.pone.0043879. PMC 3440374. PMID 22984449.
  21. ^ Cotta MA, Whitehead TR, Wheeler MB (July 1998). "Identification of a novel adenylate cyclase in the ruminal anaerobe, Prevotella ruminicola D31d". FEMS Microbiology Letters. 164 (2): 257–60. doi:10.1111/j.1574-6968.1998.tb13095.x. PMID 9682474. GenBank AF056932.
  22. ^ Téllez-Sosa J, Soberón N, Vega-Segura A, Torres-Márquez ME, Cevallos MA (July 2002). "The Rhizobium etli cyaC product: characterization of a novel adenylate cyclase class". Journal of Bacteriology. 184 (13): 3560–8. doi:10.1128/jb.184.13.3560-3568.2002. PMC 135151. PMID 12057950. GenBank AF299113.

Further reading

  • Sodeman W, Sodeman T (2005). "Physiologic- and Adenylate Cyclase-Coupled Beta-Adrenergic Receptors". Sodeman's Pathologic Physiology: Mechanisms of Disease. W B Saunders Co. pp. 143–145. ISBN 978-0721610108.

External links

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This is the Wikipedia entry entitled "Guanylate cyclase-coupled receptor". More...

Guanylate cyclase-coupled receptor Edit Wikipedia article

Receptor guanylyl cyclase
Identifiers
SymbolGUCY
PfamPF00211
InterProIPR001054
Membranome49
Natriuretic peptide receptor
Identifiers
SymbolANPR
InterProIPR001170
Membranome1131

Guanylate cyclase-coupled receptors or Membrane-bound guanylyl cyclases are single-pass transmembrane proteins.[1] Guanylate cyclase-coupled receptor on cell surface consists of two parts: the extracellular part, or the receptor domain, and the intracellular part, or the guanylate cyclase activity domain. When the receptor is activated by the ligation, it can cyclize the guanylate into cGMP. An example of Guanylate cyclase-coupled receptors is ANF receptors (NPR1, NPR2 and NPR3) in kidney. Additionally, there exist intracellular guanylate cyclase-coupled receptor like soluble NO-activated guanylate cyclase.[2]

They are enzyme-linked receptors:

There is also a human pseudogene for GUCY2GP.

References

  1. ^ Siegel GJ, Albers RW (2006). Basic neurochemistry: molecular, cellular, and medical aspects. Academic Press. pp. 368–. ISBN 978-0-12-088397-4. Retrieved 16 December 2010.
  2. ^ Nelson DL, Cox MM, Lehninger AL (2013). Lehninger Principles of Biochemistry (6th ed.). New York: W. H. Freeman and Company. pp. 436–484. ISBN 978-1-4292-3414-6.

External links

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Adenylate and Guanylate cyclase catalytic domain Provide feedback

No Pfam abstract.

Internal database links

External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR001054

Guanylate cyclases ( EC ) catalyse the formation of cyclic GMP (cGMP) from GTP. cGMP acts as an intracellular messenger, activating cGMP-dependent kinases and regulating cGMP-sensitive ion channels. The role of cGMP as a second messenger in vascular smooth muscle relaxation and retinal photo-transduction is well established. Guanylate cyclase is found both in the soluble and particulate fractions of eukaryotic cells. The soluble and plasma membrane-bound forms differ in structure, regulation and other properties [ PUBMED:1349465 , PUBMED:1356629 , PUBMED:1680765 , PUBMED:1982420 ]. Most currently known plasma membrane-bound forms are receptors for small polypeptides. The soluble forms of guanylate cyclase are cytoplasmic heterodimers having alpha and beta subunits.

In all characterised eukaryote guanylyl- and adenylyl cyclases, cyclic nucleotide synthesis is carried out by the conserved class III cyclase domain.

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan Nucleot_cyclase (CL0276), which has the following description:

This superfamily includes adenylyl cyclase and the GGDEF domain [1].

The clan contains the following 8 members:

Adcy_cons_dom Cmr2_N EAL GCH_III GGDEF GGDEF_2 Guanylate_cyc mCpol

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets and the UniProtKB sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(19)
Full
(41583)
Representative proteomes UniProt
(132651)
RP15
(9105)
RP35
(19053)
RP55
(37152)
RP75
(58149)
Jalview View  View  View  View  View  View  View 
HTML View             
PP/heatmap 1            

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(19)
Full
(41583)
Representative proteomes UniProt
(132651)
RP15
(9105)
RP35
(19053)
RP55
(37152)
RP75
(58149)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(19)
Full
(41583)
Representative proteomes UniProt
(132651)
RP15
(9105)
RP35
(19053)
RP55
(37152)
RP75
(58149)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Prosite
Previous IDs: guanylate_cyc;
Type: Domain
Sequence Ontology: SO:0000417
Author: Finn RD
Number in seed: 19
Number in full: 41583
Average length of the domain: 176.20 aa
Average identity of full alignment: 24 %
Average coverage of the sequence by the domain: 25.64 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 61295632 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 21.9 21.9
Trusted cut-off 21.9 21.9
Noise cut-off 21.8 21.8
Model length: 183
Family (HMM) version: 23
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Hide

Weight segments by...


Change the size of the sunburst

Small
Large

Colour assignments

Archea Archea Eukaryota Eukaryota
Bacteria Bacteria Other sequences Other sequences
Viruses Viruses Unclassified Unclassified
Viroids Viroids Unclassified sequence Unclassified sequence

Selections

Align selected sequences to HMM

Generate a FASTA-format file

Clear selection

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the Guanylate_cyc domain has been found. There are 273 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein sequence.

Loading structure mapping...

AlphaFold Structure Predictions

The list of proteins below match this family and have AlphaFold predicted structures. Click on the protein accession to view the predicted structure.

Protein Predicted structure External Information
A0A078BQP2 View 3D Structure Click here
A0A0G2KGK2 View 3D Structure Click here
A0A0G2KQV0 View 3D Structure Click here
A0A0R4ICV5 View 3D Structure Click here
A0A0R4IPH9 View 3D Structure Click here
A0A0U1RPR8 View 3D Structure Click here
A0A144A0Z1 View 3D Structure Click here
A0A144A236 View 3D Structure Click here
A0A144A544 View 3D Structure Click here
A0A1D5NS94 View 3D Structure Click here
A0A1D8PR83 View 3D Structure Click here
A0A2R8Q7J1 View 3D Structure Click here
A0A2R8Q8U2 View 3D Structure Click here
A0A2R8QHM5 View 3D Structure Click here
A1ZB47 View 3D Structure Click here
A2BFQ0 View 3D Structure Click here
A4HX84 View 3D Structure Click here
A4HX85 View 3D Structure Click here
A4HX86 View 3D Structure Click here
A4HX87 View 3D Structure Click here
A4I382 View 3D Structure Click here
A4IDA6 View 3D Structure Click here
A8JNU1 View 3D Structure Click here
A8WPG9 View 3D Structure Click here
A8XQC7 View 3D Structure Click here
B1Q257 View 3D Structure Click here
B3DHF2 View 3D Structure Click here
C0H4R1 View 3D Structure Click here
D2CFN3 View 3D Structure Click here
D4A3N4 View 3D Structure Click here
E7EAU8 View 3D Structure Click here
E7EZW5 View 3D Structure Click here
E7F111 View 3D Structure Click here
E7F3T9 View 3D Structure Click here
E7F6T1 View 3D Structure Click here
E7FC63 View 3D Structure Click here
E7FDF3 View 3D Structure Click here
E7FDV3 View 3D Structure Click here
E7FEP5 View 3D Structure Click here
E7FEU6 View 3D Structure Click here