Summary: Glutathione peroxidase
Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.
This is the Wikipedia entry entitled "Glutathione peroxidase". More...
Glutathione peroxidase Edit Wikipedia article
Glutathione peroxidase | |||||||||
---|---|---|---|---|---|---|---|---|---|
![]() | |||||||||
Identifiers | |||||||||
EC number | 1.11.1.9 | ||||||||
CAS number | 9013-66-5 | ||||||||
Databases | |||||||||
IntEnz | IntEnz view | ||||||||
BRENDA | BRENDA entry | ||||||||
ExPASy | NiceZyme view | ||||||||
KEGG | KEGG entry | ||||||||
MetaCyc | metabolic pathway | ||||||||
PRIAM | profile | ||||||||
PDB structures | RCSB PDB PDBe PDBsum | ||||||||
Gene Ontology | AmiGO / QuickGO | ||||||||
|
Glutathione peroxidase | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||||
Symbol | GSHPx | ||||||||||
Pfam | PF00255 | ||||||||||
InterPro | IPR000889 | ||||||||||
PROSITE | PDOC00396 | ||||||||||
SCOPe | 1gp1 / SUPFAM | ||||||||||
|
Glutathione peroxidase (GPx) (EC 1.11.1.9) is the general name of an enzyme family with peroxidase activity whose main biological role is to protect the organism from oxidative damage.[2] The biochemical function of glutathione peroxidase is to reduce lipid hydroperoxides to their corresponding alcohols and to reduce free hydrogen peroxide to water.[3]
Contents
Isozymes
Several isozymes are encoded by different genes, which vary in cellular location and substrate specificity. Glutathione peroxidase 1 (GPx1) is the most abundant version, found in the cytoplasm of nearly all mammalian tissues, whose preferred substrate is hydrogen peroxide. Glutathione peroxidase 4 (GPx4) has a high preference for lipid hydroperoxides; it is expressed in nearly every mammalian cell, though at much lower levels. Glutathione peroxidase 2 is an intestinal and extracellular enzyme, while glutathione peroxidase 3 is extracellular, especially abundant in plasma.[4] So far, eight different isoforms of glutathione peroxidase (GPx1-8) have been identified in humans.
Gene | Locus | Enzyme |
---|---|---|
GPX1 | Chr. 3 p21.3 | glutathione peroxidase 1 |
GPX2 | Chr. 14 q24.1 | glutathione peroxidase 2 (gastrointestinal) |
GPX3 | Chr. 5 q23 | glutathione peroxidase 3 (plasma) |
GPX4 | Chr. 19 p13.3 | glutathione peroxidase 4 (phospholipid hydroperoxidase) |
GPX5 | Chr. 6 p21.32 | glutathione peroxidase 5 (epididymal androgen-related protein) |
GPX6 | Chr. 6 p21 | glutathione peroxidase 6 (olfactory) |
GPX7 | Chr. 1 p32 | glutathione peroxidase 7 |
GPX8 | Chr. 5 q11.2 | glutathione peroxidase 8 (putative) |
Reaction
The main reaction that glutathione peroxidase catalyzes is:
- 2GSH + H2O2 → GS–SG + 2H2O
where GSH represents reduced monomeric glutathione, and GS–SG represents glutathione disulfide. The mechanism involves oxidation of the selenol of a selenocysteine residue by hydrogen peroxide. This process gives the derivative with a selenenic acid (RSeOH) group. The selenenic acid is then converted back to the selenol by a two step process that begins with reaction with GSH to form the GS-SeR and water. A second GSH molecule reduces the GS-SeR intermediate back to the selenol, releasing GS-SG as the by-product. A simplified representation is shown below:[5]
- RSeH + H2O2 → RSeOH + H2O
- RSeOH + GSH → GS-SeR + H2O
- GS-SeR + GSH → GS-SG + RSeH
Glutathione reductase then reduces the oxidized glutathione to complete the cycle:
- GS–SG + NADPH + H+ → 2 GSH + NADP+.
Structure
Mammalian GPx1, GPx2, GPx3, and GPx4 have been shown to be selenium-containing enzymes, whereas GPx6 is a selenoprotein in humans with cysteine-containing homologues in rodents. GPx1, GPx2, and GPx3 are homotetrameric proteins, whereas GPx4 has a monomeric structure. As the integrity of the cellular and subcellular membranes depends heavily on glutathione peroxidase, its antioxidative protective system itself depends heavily on the presence of selenium.
Animal models
Mice genetically engineered to lack glutathione peroxidase 1 (Gpx1−/− mice) are grossly phenotypically normal and have normal lifespans, indicating this enzyme is not critical for life. However, Gpx1−/− mice develop cataracts at an early age and exhibit defects in muscle satellite cell proliferation.[4] Gpx1 −/− mice showed up to 16 dB higher auditory brainstem response (ABR) thresholds than control mice. After 110 dB noise exposure for one hour, Gpx1 −/− mice had up to 15 dB greater noise-induced hearing loss compared with control mice.[6]"
Mice with knockouts for GPX3 (GPX3−/−) or GPX2 (GPX2−/−) also develop normally [7][8]
However, glutathione peroxidase 4 knockout mice die during early embryonic development.[4] Some evidence, though, indicates reduced levels of glutathione peroxidase 4 can increase life expectancy in mice.[9]
The bovine erythrocyte enzyme has a molecular weight of 84 kDa.
Discovery
Glutathione peroxidase was discovered in 1957 by Gordon C. Mills.[10]
Clinical significance
It has been shown that low levels of glutathione peroxidase as measured in the serum may be a contributing factor to vitiligo.[11] Lower plasma glutathione peroxide levels were also observed in patients with type 2 diabetes with macroalbuminuria and this was correlated to the stage of diabetic nephropathy.[citation needed] In one study, the activity of glutathione peroxidase along with other antioxidant enzymes such as superoxide dismutase and catalase was not associated with coronary heart disease risk in women.[12] Glutathione peroxidase activity was found to be much lower in patients with relapsing-remitting multiple sclerosis.[13] One study has suggested that glutathione peroxidase and superoxide dismutase polymorphisms play a role in the development of celiac disease.[14]
See also
References
- ^ PDB: 1GP1; Epp O, Ladenstein R, Wendel A (Jun 1983). "The refined structure of the selenoenzyme glutathione peroxidase at 0.2-nm resolution". European Journal of Biochemistry / FEBS. 133 (1): 51–69. doi:10.1111/j.1432-1033.1983.tb07429.x. PMID 6852035.
- ^ Nachiappan, Vasanthi; Muthukumar, Kannan (December 2010). "Cadmium-induced oxidative stress in Saccharomyces cerevisiae". Indian Journal of Biochemistry and Biophysics. 47 (6). ISSN 0975-0959.
- ^ Muthukumar, Kannan; Rajakumar, Selvaraj; Sarkar, Mary Nirmala; Nachiappan, Vasanthi (2011-05-01). "Glutathione peroxidase3 of Saccharomyces cerevisiae protects phospholipids during cadmium-induced oxidative stress". Antonie van Leeuwenhoek. 99 (4): 761–771. doi:10.1007/s10482-011-9550-9. ISSN 1572-9699. PMID 21229313.
- ^ a b c Muller FL, Lustgarten MS, Jang Y, Richardson A, Van Remmen H (Aug 2007). "Trends in oxidative aging theories". Free Radical Biology & Medicine. 43 (4): 477–503. doi:10.1016/j.freeradbiomed.2007.03.034. PMID 17640558.
- ^ Bhabak KP, Mugesh G (Nov 2010). "Functional mimics of glutathione peroxidase: bioinspired synthetic antioxidants". Accounts of Chemical Research. 43 (11): 1408–19. doi:10.1021/ar100059g. PMID 20690615.
- ^ Ohlemiller KK, McFadden SL, Ding DL, Lear PM, Ho YS (Nov 2000). "Targeted mutation of the gene for cellular glutathione peroxidase (Gpx1) increases noise-induced hearing loss in mice". Journal of the Association for Research in Otolaryngology. 1 (3): 243–54. doi:10.1007/s101620010043. PMC 2504546. PMID 11545230.
- ^ Esworthy RS, Aranda R, MartÃn MG, Doroshow JH, Binder SW, Chu FF (Sep 2001). "Mice with combined disruption of Gpx1 and Gpx2 genes have colitis". American Journal of Physiology. Gastrointestinal and Liver Physiology. 281 (3): G848–55. doi:10.1152/ajpgi.2001.281.3.G848. PMID 11518697.
- ^ Olson GE, Whitin JC, Hill KE, Winfrey VP, Motley AK, Austin LM, Deal J, Cohen HJ, Burk RF (May 2010). "Extracellular glutathione peroxidase (Gpx3) binds specifically to basement membranes of mouse renal cortex tubule cells". American Journal of Physiology. Renal Physiology. 298 (5): F1244–53. doi:10.1152/ajprenal.00662.2009. PMC 2867408. PMID 20015939.
- ^ Ran Q, Liang H, Ikeno Y, Qi W, Prolla TA, Roberts LJ, Wolf N, Van Remmen H, VanRemmen H, Richardson A (Sep 2007). "Reduction in glutathione peroxidase 4 increases life span through increased sensitivity to apoptosis". The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences. 62 (9): 932–42. doi:10.1093/gerona/62.9.932. PMID 17895430.
- ^ Mills GC (Nov 1957). "Hemoglobin catabolism. I. Glutathione peroxidase, an erythrocyte enzyme which protects hemoglobin from oxidative breakdown". The Journal of Biological Chemistry. 229 (1): 189–97. PMID 13491573.
- ^ Zedan H, Abdel-Motaleb AA, Kassem NM, Hafeez HA, Hussein MR (Mar 2015). "Low glutathione peroxidase activity levels in patients with vitiligo". Journal of Cutaneous Medicine and Surgery. 19 (2): 144–8. doi:10.2310/7750.2014.14076. PMID 25775636.
- ^ Yang S, Jensen MK, Rimm EB, Willett W, Wu T (Nov 2014). "Erythrocyte superoxide dismutase, glutathione peroxidase, and catalase activities and risk of coronary heart disease in generally healthy women: a prospective study". American Journal of Epidemiology. 180 (9): 901–8. doi:10.1093/aje/kwu195. PMC 4207716. PMID 25156995.
- ^ Socha K, Kochanowicz J, Karpińska E, Soroczyńska J, Jakoniuk M, Mariak Z, Borawska MH (2014). "Dietary habits and selenium, glutathione peroxidase and total antioxidant status in the serum of patients with relapsing-remitting multiple sclerosis". Nutrition Journal. 13: 62. doi:10.1186/1475-2891-13-62. PMC 4080729. PMID 24943732.
- ^ Katar M, Ozugurlu AF, Ozyurt H, Benli I (2014). "Evaluation of glutathione peroxidase and superoxide dismutase enzyme polymorphisms in celiac disease patients". Genetics and Molecular Research. 13 (1): 1030–7. doi:10.4238/2014.February.20.4. PMID 24634124.
This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.
This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.
Glutathione peroxidase Provide feedback
No Pfam abstract.
Internal database links
SCOOP: | AhpC-TSA AhpC-TSA_2 Redoxin SCO1-SenC T4_deiodinase Thioredoxin Thioredoxin_2 Thioredoxin_7 Thioredoxin_8 TraF |
Similarity to PfamA using HHSearch: | AhpC-TSA Redoxin |
External database links
PROSITE: | PDOC00396 |
SCOP: | 1gp1 |
This tab holds annotation information from the InterPro database.
InterPro entry IPR000889
Glutathione peroxidase (GSHPx) (EC) is an enzyme that catalyses the reduction of hydroxyperoxides by glutathione [PUBMED:7565867]. Its main function is to protect against the damaging effect of endogenously formed hydroxyperoxides. In higher vertebrates, several forms of GSHPx are known, including a ubiquitous cytosolic form (GSHPx-1), a gastrointestinal cytosolic form (GSHPx-GI), a plasma secreted form (GSHPx-P), and an epididymal secretory form (GSHPx-EP). In addition to these characterised forms, the sequence of a protein of unknown function [PUBMED:2771650] has been shown to be evolutionary related to those of GSHPx's.
In filarial nematode parasites, the major soluble cuticular protein (gp29) is a secreted GSHPx, which may provide a mechanism of resistance to the immune reaction of the mammalian host by neutralising the products of the oxidative burst of leukocytes [PUBMED:1631065]. The structure of bovine seleno-glutathione peroxidase has been determined [PUBMED:6852035]. The protein belongs to the alpha-beta class, with a three layer(aba) sandwich architecture. The catalyic site of GSHPx contains a conserved residue which is either a cysteine or, in many eukaryotic GSHPx, a selenocysteine [PUBMED:2142875].
Gene Ontology
The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.
Molecular function | glutathione peroxidase activity (GO:0004602) |
Biological process | response to oxidative stress (GO:0006979) |
oxidation-reduction process (GO:0055114) |
Domain organisation
Below is a listing of the unique domain organisations or architectures in which this domain is found. More...
Loading domain graphics...
Pfam Clan
This family is a member of clan Thioredoxin (CL0172), which has the following description:
This clan contains families related to the thioredoxin family. Thioredoxins are small enzymes that are involved in redox reactions via the reversible oxidation of an active centre disulfide bond. The thioredoxin fold consists of a 3 layer alpha/beta/alpha sandwich and a central beta sheet.
The clan contains the following 62 members:
2Fe-2S_thioredx AhpC-TSA AhpC-TSA_2 ArsC ArsD Calsequestrin DIM1 DSBA DUF1223 DUF1462 DUF1525 DUF1687 DUF2703 DUF2847 DUF4174 DUF836 DUF899 DUF953 ERp29_N GILT Glutaredoxin GSHPx GST_N GST_N_2 GST_N_3 GST_N_4 GST_N_5 HyaE KaiB L51_S25_CI-B8 MRP-S23 MRP-S25 OST3_OST6 Phe_hydrox_dim Phosducin QSOX_Trx1 Rdx Redoxin SCO1-SenC SelP_N Sep15_SelM SH3BGR T4_deiodinase Thioredox_DsbH Thioredoxin Thioredoxin_11 Thioredoxin_12 Thioredoxin_13 Thioredoxin_14 Thioredoxin_15 Thioredoxin_16 Thioredoxin_2 Thioredoxin_3 Thioredoxin_4 Thioredoxin_5 Thioredoxin_6 Thioredoxin_7 Thioredoxin_8 Thioredoxin_9 Tom37 TraF YtfJ_HI0045Alignments
We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the UniProtKB sequence database, the NCBI sequence database, and our metagenomics sequence database. More...
View options
We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.
Seed (10) |
Full (9578) |
Representative proteomes | UniProt (34569) |
NCBI (55341) |
Meta (2485) |
||||
---|---|---|---|---|---|---|---|---|---|
RP15 (1181) |
RP35 (4024) |
RP55 (8405) |
RP75 (14513) |
||||||
Jalview | |||||||||
HTML | |||||||||
PP/heatmap | 1 |
1Cannot generate PP/Heatmap alignments for seeds; no PP data available
Key:
available,
not generated,
— not available.
Format an alignment
Download options
We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.
Seed (10) |
Full (9578) |
Representative proteomes | UniProt (34569) |
NCBI (55341) |
Meta (2485) |
||||
---|---|---|---|---|---|---|---|---|---|
RP15 (1181) |
RP35 (4024) |
RP55 (8405) |
RP75 (14513) |
||||||
Raw Stockholm | |||||||||
Gzipped |
You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.
HMM logo
HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...
Trees
This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.
Note: You can also download the data file for the tree.
Curation and family details
This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.
Curation
Seed source: | Prosite |
Previous IDs: | none |
Type: | Family |
Sequence Ontology: | SO:0100021 |
Author: |
Finn RD |
Number in seed: | 10 |
Number in full: | 9578 |
Average length of the domain: | 103.30 aa |
Average identity of full alignment: | 43 % |
Average coverage of the sequence by the domain: | 56.17 % |
HMM information
HMM build commands: |
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 47079205 -E 1000 --cpu 4 HMM pfamseq
|
||||||||||||
Model details: |
|
||||||||||||
Model length: | 108 | ||||||||||||
Family (HMM) version: | 20 | ||||||||||||
Download: | download the raw HMM for this family |
Species distribution
Sunburst controls
HideWeight segments by...
Change the size of the sunburst
Colour assignments
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Selections
Align selected sequences to HMM
Generate a FASTA-format file
Clear selection
This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...
Tree controls
HideThe tree shows the occurrence of this domain across different species. More...
Loading...
Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.
Interactions
There is 1 interaction for this family. More...
GSHPxStructures
For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the GSHPx domain has been found. There are 38 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein sequence.
Loading structure mapping...