Summary: Prolyl oligopeptidase family
Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.
The Pfam group coordinates the annotation of Pfam families in Wikipedia, but we have not yet assigned a Wikipedia article to this family. If you think that a particular Wikipedia article provides good annotation, please let us know.
This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.
Prolyl oligopeptidase family Provide feedback
No Pfam abstract.
Internal database links
External database links
MEROPS: | S9 |
PROSITE: | PDOC00587 |
SCOP: | 1qfs |
This tab holds annotation information from the InterPro database.
InterPro entry IPR001375
Proteolytic enzymes that exploit serine in their catalytic activity are ubiquitous, being found in viruses, bacteria and eukaryotes [PUBMED:7845208]. They include a wide range of peptidase activity, including exopeptidase, endopeptidase, oligopeptidase and omega-peptidase activity. Many families of serine protease have been identified, these being grouped into clans on the basis of structural similarity and other functional evidence [PUBMED:7845208]. Structures are known for members of the clans and the structures indicate that some appear to be totally unrelated, suggesting different evolutionary origins for the serine peptidases [PUBMED:7845208].
Not withstanding their different evolutionary origins, there are similarities in the reaction mechanisms of several peptidases. Chymotrypsin, subtilisin and carboxypeptidase C have a catalytic triad of serine, aspartate and histidine in common: serine acts as a nucleophile, aspartate as an electrophile, and histidine as a base [PUBMED:7845208]. The geometric orientations of the catalytic residues are similar between families, despite different protein folds [PUBMED:7845208]. The linear arrangements of the catalytic residues commonly reflect clan relationships. For example the catalytic triad in the chymotrypsin clan (PA) is ordered HDS, but is ordered DHS in the subtilisin clan (SB) and SDH in the carboxypeptidase clan (SC) [PUBMED:7845208, PUBMED:8439290].
This domain covers the active site serine of the serine peptidases belonging to MEROPS peptidase family S9 (prolyl oligopeptidase family, clan SC). The protein fold of the peptidase domain for members of this family resembles that of serine carboxypeptidase D, the type example of clan SC. Examples of protein families containing this domain are:
- Prolyl endopeptidase (EC) (PE) (also called post-proline cleaving enzyme). PE is an enzyme that cleaves peptide bonds on the C-terminal side of prolyl residues. The sequence of PE has been obtained from a mammalian species (pig) and from bacteria (Flavobacterium meningosepticum and Aeromonas hydrophila); there is a high degree of sequence conservation between these sequences.
- Escherichia coli protease II (EC) (oligopeptidase B) (gene prtB) which cleaves peptide bonds on the C-terminal side of lysyl and argininyl residues.
- Dipeptidyl peptidase IV (EC) (DPP IV). DPP IV is an enzyme that removes N-terminal dipeptides sequentially from polypeptides having unsubstituted N-termini provided that the penultimate residue is proline.
- Saccharomyces cerevisiae (Baker's yeast) vacuolar dipeptidyl aminopeptidases A and B (DPAP A and DPAP B), encoded by the STE13 and DAP2 genes respectively. DPAP A is responsible for the proteolytic maturation of the alpha-factor precursor.
- Acylamino-acid-releasing enzyme (EC) (acyl-peptide hydrolase). This enzyme catalyses the hydrolysis of the amino-terminal peptide bond of an N-acetylated protein to generate a N-acetylated amino acid and a protein with a free amino-terminus.
These proteins belong to MEROPS peptidase families S9A, S9B and S9C.
Gene Ontology
The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.
Molecular function | serine-type peptidase activity (GO:0008236) |
Biological process | proteolysis (GO:0006508) |
Domain organisation
Below is a listing of the unique domain organisations or architectures in which this domain is found. More...
Loading domain graphics...
Pfam Clan
This family is a member of clan AB_hydrolase (CL0028), which has the following description:
This catalytic domain is found in a very wide range of enzymes.
The clan contains the following 70 members:
Abhydro_lipase Abhydrolase_1 Abhydrolase_2 Abhydrolase_3 Abhydrolase_4 Abhydrolase_5 Abhydrolase_6 Abhydrolase_7 Abhydrolase_8 Abhydrolase_9 Acyl_transf_2 Asp2 AXE1 BAAT_C Chlorophyllase Chlorophyllase2 COesterase Cutinase DLH DUF1057 DUF1100 DUF1350 DUF1400 DUF1749 DUF2048 DUF2235 DUF2920 DUF2974 DUF3089 DUF3141 DUF3530 DUF452 DUF676 DUF726 DUF818 DUF829 DUF900 DUF915 EHN Esterase Esterase_PHB FSH1 Hydrolase_4 LCAT LIDHydrolase LIP Lipase Lipase3_N Lipase_2 Lipase_3 Ndr PAE PAF-AH_p_II Palm_thioest PE-PPE Peptidase_S10 Peptidase_S15 Peptidase_S28 Peptidase_S37 Peptidase_S9 PGAP1 PhaC_N PHB_depo_C PhoPQ_related Say1_Mug180 Ser_hydrolase Tannase Thioesterase UPF0227 VirJAlignments
We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the UniProtKB sequence database, the NCBI sequence database, and our metagenomics sequence database. More...
View options
We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.
Seed (62) |
Full (34106) |
Representative proteomes | UniProt (124828) |
NCBI (352101) |
Meta (7505) |
||||
---|---|---|---|---|---|---|---|---|---|
RP15 (4108) |
RP35 (14499) |
RP55 (31574) |
RP75 (53690) |
||||||
Jalview | |||||||||
HTML | |||||||||
PP/heatmap | 1 |
1Cannot generate PP/Heatmap alignments for seeds; no PP data available
Key:
available,
not generated,
— not available.
Format an alignment
Download options
We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.
Seed (62) |
Full (34106) |
Representative proteomes | UniProt (124828) |
NCBI (352101) |
Meta (7505) |
||||
---|---|---|---|---|---|---|---|---|---|
RP15 (4108) |
RP35 (14499) |
RP55 (31574) |
RP75 (53690) |
||||||
Raw Stockholm | |||||||||
Gzipped |
You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.
HMM logo
HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...
Trees
This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.
Note: You can also download the data file for the tree.
Curation and family details
This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.
Curation
Seed source: | Prosite |
Previous IDs: | Prolyl_oligopep; |
Type: | Domain |
Sequence Ontology: | SO:0000417 |
Author: |
Finn RD |
Number in seed: | 62 |
Number in full: | 34106 |
Average length of the domain: | 195.70 aa |
Average identity of full alignment: | 19 % |
Average coverage of the sequence by the domain: | 30.29 % |
HMM information
HMM build commands: |
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 47079205 -E 1000 --cpu 4 HMM pfamseq
|
||||||||||||
Model details: |
|
||||||||||||
Model length: | 212 | ||||||||||||
Family (HMM) version: | 22 | ||||||||||||
Download: | download the raw HMM for this family |
Species distribution
Sunburst controls
HideWeight segments by...
Change the size of the sunburst
Colour assignments
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Selections
Align selected sequences to HMM
Generate a FASTA-format file
Clear selection
This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...
Tree controls
HideThe tree shows the occurrence of this domain across different species. More...
Loading...
Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.
Interactions
There are 6 interactions for this family. More...
V-set Hormone_3 Peptidase_S9 DPPIV_N DPPIV_N Peptidase_S9_NStructures
For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the Peptidase_S9 domain has been found. There are 569 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein sequence.
Loading structure mapping...