Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
81  structures 7436  species 0  interactions 9123  sequences 54  architectures

Family: ALAD (PF00490)

Summary: Delta-aminolevulinic acid dehydratase

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Porphobilinogen synthase". More...

Porphobilinogen synthase Edit Wikipedia article

porphobilinogen synthase
DALA dehydratase
EC number4.2.1.24
CAS number9036-37-7
IntEnzIntEnz view
ExPASyNiceZyme view
MetaCycmetabolic pathway
PDB structuresRCSB PDB PDBe PDBsum
Gene OntologyAmiGO / QuickGO
Delta-aminolevulinic acid dehydratase
NCBI gene210
Other data
EC number4.2.1.24
LocusChr. 9 q32
PDB 1b4k EBI.jpg
high resolution crystal structure of a mg2-dependent 5-aminolevulinic acid dehydratase
Pfam clanCL0036

Porphobilinogen synthase (or ALA dehydratase, or aminolevulinate dehydratase) synthesizes porphobilinogen through the asymmetric condensation of two molecules of aminolevulinic acid. All natural tetrapyrroles, including hemes, chlorophylls and vitamin B12, share porphobilinogen as a common precursor.

It catalyzes the second step of the biosynthesis of porphyrin:

2 δ-aminolevulinic acid porphobilinogen + 2 H2O

The porphobilinogen synthase catalyzed reaction is the first common step in the biosynthesis of all biological tetrapyrroles.

Porphobilinogen synthase is the prototype morpheein.[1]


The structural basis for allosteric regulation of Porphobilinogen synthase (PBGS) is modulation of a quaternary structure equilibrium between octamer and hexamer (via dimers), which is represented schematically as 6mer* ↔ 2mer* ↔ 2mer ↔ 8mer. The * represents a reorientation between two domains of each subunit that occurs in the dissociated state because it is sterically forbidden in the larger multimers.[1]

PBGS Quaternary Structure Equilibrium.

PBGS is encoded by a single gene and each PBGS multimer is composed of multiple copies of the same protein. Each PBGS subunit consists of a ~300 residue αβ-barrel domain, which houses the enzyme's active site in its center, and a >25 residue N-terminal arm domain. Allosteric regulation of PBGS can be described in terms of the orientation of the αβ-barrel domain with respect to the N-terminal arm domain.

Each N-terminal arm has up to two interactions with other subunits in a PBGS multimer. One of these interactions helps to stabilize a "closed" conformation of the active site lid. The other interaction restricts solvent access from the other end of the αβ-barrel.

In the inactive multimeric state, the N-terminal arm domain is not involved in the lid-stabilizing interaction, and in the crystal structure of the inactive assembly, the active site lid is disordered.

Allosteric regulators

As a nearly universal enzyme with a highly conserved active site, PBGS would not be a prime target for the development of antimicrobials and/or herbicides. To the contrary, allosteric sites can be much more phylogenetically variable than active sites, thus presenting more drug development opportunities.[1]

Phylogenetic variation in PBGS allostery leads to the framing of discussion of PBGS allosteric regulation in terms of intrinsic and extrinsic factors.

Intrinsic allosteric regulators


The allosteric magnesium ion lies at the highly hydrated interface of two pro-octamer dimers. It appears to be easily dissociable, and it has been shown that hexamers accumulate when magnesium is removed in vitro.[2]


Though it is not common to consider hydronium ions as allosteric regulators, in the case of PBGS, side chain protonation at locations other than the active site has been shown to affect the quaternary structure equilibrium, and thus to affect the rate of its catalyzed reaction as well.

Extrinsic allosteric regulators

Small molecule hexamer stabilization

Inspection of the PBGS 6mer* reveals a surface cavity that is not present in the 8mer. Small molecule binding to this phylogenetically variable cavity has been proposed to stabilize 6mer* of the targeted PBGS and consequently inhibit activity.

Such allosteric regulators are known as morphlocks because they lock PBGS in a specific morpheein form (6mer*).[3]


A deficiency of porphobilinogen synthase is usually acquired (rather than hereditary) and can be caused by heavy metal poisoning, especially lead poisoning, as the enzyme is very susceptible to inhibition by heavy metals.[4]

Hereditary insufficiency of porphobilinogen synthase is called porphobilinogen synthase (or ALA dehydratase) deficiency poprhyria. It is an extremely rare cause of porphyria,[5] with less than 10 cases ever reported.[6] All disease associated protein variants favor hexamer formation relative to the wild type human enzyme.[5]

Heme synthesis—note that some reactions occur in the cytoplasm and some in the mitochondrion (yellow)

Lead poisoning works on the cellular level by binding to this enzyme, rendering it useless.

PBGS as the prototype morpheein

The morpheein model of allostery exemplified by PBGS adds an additional layer of understanding to potential mechanisms for regulation of protein function and complements the increased focus that the protein science community is placing on protein structure dynamics.[1]

This model illustrates how the dynamics of phenomena such as alternate protein conformations, alternate oligomeric states, and transient protein-protein interactions can be harnessed for allosteric regulation of catalytic activity.


  1. ^ a b c d Jaffe EK, Lawrence SH (March 2012). "Allostery and the dynamic oligomerization of porphobilinogen synthase". Arch. Biochem. Biophys. 519 (2): 144–53. doi:10.1016/ PMC 3291741. PMID 22037356.
  2. ^ Breinig S, Kervinen J, Stith L, Wasson AS, Fairman R, Wlodawer A, Zdanov A, Jaffe EK (September 2003). "Control of tetrapyrrole biosynthesis by alternate quaternary forms of porphobilinogen synthase". Nat. Struct. Biol. 10 (9): 757–63. doi:10.1038/nsb963. PMID 12897770.
  3. ^ Lawrence SH, Jaffe EK (2008). "Expanding the Concepts in Protein Structure-Function Relationships and Enzyme Kinetics: Teaching using Morpheeins". Biochem Mol Biol Educ. 36 (4): 274–283. doi:10.1002/bmb.20211. PMC 2575429. PMID 19578473.
  4. ^ ALA dehydratase reaction, from NetBiochem at the University of Utah. Last modified 1/5/95
  5. ^ a b Jaffe EK, Stith L (February 2007). "ALAD porphyria is a conformational disease". Am. J. Hum. Genet. 80 (2): 329–37. doi:10.1086/511444. PMC 1785348. PMID 17236137.
  6. ^ Overview of the Porphyrias Archived 2011-07-22 at the Wayback Machine at The Porphyrias Consortium (a part of NIH Rare Diseases Clinical Research Network (RDCRN)) Retrieved June 2011

External links

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Delta-aminolevulinic acid dehydratase Provide feedback

No Pfam abstract.

External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR001731

Tetrapyrroles are large macrocyclic compounds derived from a common biosynthetic pathway [ PUBMED:16564539 ]. The end-product, uroporphyrinogen III, is used to synthesise a number of important molecules, including vitamin B12, haem, sirohaem, chlorophyll, coenzyme F430 and phytochromobilin [ PUBMED:17227226 ].

  • The first stage in tetrapyrrole synthesis is the synthesis of 5-aminoaevulinic acid ALA via two possible routes: (1) condensation of succinyl CoA and glycine (C4 pathway) using ALA synthase ( EC ), or (2) decarboxylation of glutamate (C5 pathway) via three different enzymes, glutamyl-tRNA synthetase ( EC ) to charge a tRNA with glutamate, glutamyl-tRNA reductase ( EC ) to reduce glutamyl-tRNA to glutamate-1-semialdehyde (GSA), and GSA aminotransferase ( EC ) to catalyse a transamination reaction to produce ALA.

  • The second stage is to convert ALA to uroporphyrinogen III, the first macrocyclic tetrapyrrolic structure in the pathway. This is achieved by the action of three enzymes in one common pathway: porphobilinogen (PBG) synthase (or ALA dehydratase, EC ) to condense two ALA molecules to generate porphobilinogen; hydroxymethylbilane synthase (or PBG deaminase, EC ) to polymerise four PBG molecules into preuroporphyrinogen (tetrapyrrole structure); and uroporphyrinogen III synthase ( EC ) to link two pyrrole units together (rings A and D) to yield uroporphyrinogen III.

  • Uroporphyrinogen III is the first branch point of the pathway. To synthesise cobalamin (vitamin B12), sirohaem, and coenzyme F430, uroporphyrinogen III needs to be converted into precorrin-2 by the action of uroporphyrinogen III methyltransferase ( EC ). To synthesise haem and chlorophyll, uroporphyrinogen III needs to be decarboxylated into coproporphyrinogen III by the action of uroporphyrinogen III decarboxylase ( EC ) [ PUBMED:11215515 ].

This entry represents delta-aminolevulinic acid dehydratase (ALAD), also known as porphobilinogen (PBG) synthase (PBGS, or 5-aminoaevulinic acid dehydratase EC ), which functions during the second stage of tetrapyrrole biosynthesis. This enzyme catalyses a Knorr-type condensation reaction between two molecules of ALA to generate porphobilinogen, the pyrrolic building block used in later steps [ PUBMED:17311232 ]. The structure of the enzyme is based on a TIM barrel topology made up of eight identical subunits, where each subunit binds to a metal ion that is essential for activity, usually zinc (in yeast, mammals and certain bacteria) or magnesium (in plants and other bacteria). A lysine has been implicated in the catalytic mechanism [ PUBMED:3092810 ]. The lack of PBGS enzyme causes a rare porphyric disorder known as ALAD porphyria, which appears to involve conformational changes in the enzyme [ PUBMED:17236137 ].

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...


We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets and the UniProtKB sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

Representative proteomes UniProt
Jalview View  View  View  View  View  View  View 
HTML View             
PP/heatmap 1            

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

Representative proteomes UniProt

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

Representative proteomes UniProt
Raw Stockholm Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...


This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Prosite
Previous IDs: none
Type: Domain
Sequence Ontology: SO:0000417
Author: Finn RD , Griffiths-Jones SR
Number in seed: 592
Number in full: 9123
Average length of the domain: 307.50 aa
Average identity of full alignment: 46 %
Average coverage of the sequence by the domain: 92.80 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 61295632 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 24.6 24.6
Trusted cut-off 24.6 24.6
Noise cut-off 23.7 24.1
Model length: 317
Family (HMM) version: 24
Download: download the raw HMM for this family

Species distribution

Sunburst controls


Weight segments by...

Change the size of the sunburst


Colour assignments

Archea Archea Eukaryota Eukaryota
Bacteria Bacteria Other sequences Other sequences
Viruses Viruses Unclassified Unclassified
Viroids Viroids Unclassified sequence Unclassified sequence


Align selected sequences to HMM

Generate a FASTA-format file

Clear selection

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls


The tree shows the occurrence of this domain across different species. More...


Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.


For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the ALAD domain has been found. There are 81 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein sequence.

Loading structure mapping...