Summary: ShK domain-like
Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.
This is the Wikipedia entry entitled "Stichodactyla toxin". More...
Stichodactyla toxin Edit Wikipedia article
This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.
This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.
ShK domain-like Provide feedback
This domain of is found in several C. elegans proteins. The domain is 30 amino acids long and rich in cysteine residues. There are 6 conserved cysteine positions in the domain that form three disulphide bridges. The domain is found in the potassium channel inhibitor ShK in sea anemone [1].
Literature references
-
Tudor JE, Pallaghy PK, Pennington MW, Norton RS; , Nat Struct Biol. 1996;3:317-320.: Solution structure of ShK toxin, a novel potassium channel inhibitor from a sea anemone. PUBMED:8599755 EPMC:8599755
-
Castaneda O, Sotolongo V, Amor AM, Stocklin R, Anderson AJ, Harvey AL, Engstrom A, Wernstedt C, Karlsson E; , Toxicon. 1995;33:603-613.: Characterization of a potassium channel toxin from the Caribbean Sea anemone Stichodactyla helianthus. PUBMED:7660365 EPMC:7660365
External database links
SCOP: | 1roo |
This tab holds annotation information from the InterPro database.
InterPro entry IPR003582
BgK, a 37-residue peptide toxin from the sea anemone Bunodosoma granulifera, and ShK, a 35-residue peptide toxin from the sea anemone Stichodactyla helianthus, are potent inhibitors of K(+) channels. There is a large superfamily of proteins that contains domains (referred to as ShKT domains) ressembling these two toxins. Many of these proteins are metallopeptidases, whereas others are prolyl-4-hydroxylases, tyrosinases, peroxidases, oxidoreductases, or proteins containing epidermal growth factor-like domains, thrombospondin-type repeats, or trypsin-like serine protease domains [PUBMED:19965868]. The ShKT domain has also been called NC6 (nematode six-cysteine) domain [PUBMED:10950959], SXC (six-cysteine) domain [PUBMED:10950959, PUBMED:11412804, PUBMED:9851921, PUBMED:14653817] and ICR (ion channel regulator) [PUBMED:19965868, PUBMED:16339766]. The ShKT domain is short (36 to 42 amino acids), with six conserved cysteines and a number of other conserved residues. The fold adopted by the ShKT domain contains two nearly perpendicular stretches of helices, with no additional canonical secondary structures [PUBMED:9020148]. The globular architecture of the ShKT domain is stabilised by three disulfides, one of them linking the two helices. In venomous creatures, the ShKT domain may have been modified to give rise to potent ion channel blockers, whereas the incorporation of this domain into plant oxidoreductases and prolyl hydroxylases and into worm astacin-like metalloproteases and trypsin-like serines protaeses produced enzymes with potential channel-modulatory activity.
Some proteins known to contain a ShKT domain are listed below:
- Caribbean sea anemone ShK, a potassium channel toxin [PUBMED:7660365].
- Sea anemone BgK, a potassium channel toxin [PUBMED:9020148].
- Toxocara canis family of secreted mucins Tc-MUC-1 to -5, which are implicated in immune evasion. They combine two evolutionarily distinct modules, the mucin and ShkT domains [PUBMED:10950959, PUBMED:11412804].
- Some Caenorhabditis elegans astacin-like proteins (nematode astacins, NAS), metalloproteases [PUBMED:14653817].
- Vertebrate cysteine-rich secretory proteins (Crisp) [PUBMED:16339766].
- Mammalian microfibrillar-associated protein 2 (MFAP2 or MAGP1), a matrix protein.
- Plant prolyl 4-hydroxylase.
Domain organisation
Below is a listing of the unique domain organisations or architectures in which this domain is found. More...
Loading domain graphics...
Pfam Clan
This family is a member of clan ShK-like (CL0213), which has the following description:
Members of this clan include the Crisp domain which is involved in ryanodine receptor Ca2+ signalling, and the ShK domain which is named after the ShK channel inhibitor toxin. Both domains are cysteine rich and contain multiple disulphide bonds [1][2][3].
The clan contains the following 2 members:
Crisp ShKAlignments
We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the UniProtKB sequence database, the NCBI sequence database, and our metagenomics sequence database. More...
View options
We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.
Seed (137) |
Full (8768) |
Representative proteomes | UniProt (14381) |
NCBI (14782) |
Meta (122) |
||||
---|---|---|---|---|---|---|---|---|---|
RP15 (4146) |
RP35 (5705) |
RP55 (7310) |
RP75 (8765) |
||||||
Jalview | |||||||||
HTML | |||||||||
PP/heatmap | 1 |
1Cannot generate PP/Heatmap alignments for seeds; no PP data available
Key:
available,
not generated,
— not available.
Format an alignment
Download options
We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.
Seed (137) |
Full (8768) |
Representative proteomes | UniProt (14381) |
NCBI (14782) |
Meta (122) |
||||
---|---|---|---|---|---|---|---|---|---|
RP15 (4146) |
RP35 (5705) |
RP55 (7310) |
RP75 (8765) |
||||||
Raw Stockholm | |||||||||
Gzipped |
You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.
HMM logo
HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...
Trees
This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.
Note: You can also download the data file for the tree.
Curation and family details
This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.
Curation
Seed source: | Pfam-B_662 (release 4.0) |
Previous IDs: | DUF18;ShTK; |
Type: | Domain |
Sequence Ontology: | SO:0000417 |
Author: |
Bashton M |
Number in seed: | 137 |
Number in full: | 8768 |
Average length of the domain: | 36.40 aa |
Average identity of full alignment: | 28 % |
Average coverage of the sequence by the domain: | 18.80 % |
HMM information
HMM build commands: |
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 47079205 -E 1000 --cpu 4 HMM pfamseq
|
||||||||||||
Model details: |
|
||||||||||||
Model length: | 38 | ||||||||||||
Family (HMM) version: | 25 | ||||||||||||
Download: | download the raw HMM for this family |
Species distribution
Sunburst controls
HideWeight segments by...
Change the size of the sunburst
Colour assignments
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Selections
Align selected sequences to HMM
Generate a FASTA-format file
Clear selection
This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...
Tree controls
HideThe tree shows the occurrence of this domain across different species. More...
Loading...
Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.
Structures
For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the ShK domain has been found. There are 6 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein sequence.
Loading structure mapping...