Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
252  structures 812  species 0  interactions 6884  sequences 216  architectures

Family: MACPF (PF01823)

Summary: MAC/Perforin domain

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "MACPF". More...

MACPF Edit Wikipedia article

MAC/Perforin domain
Pfam clanCDC
OPM superfamily168
OPM protein6h04

The Membrane Attack Complex/Perforin (MACPF) superfamily, sometimes referred to as the MACPF/CDC superfamily,[1] is named after a domain that is common to the membrane attack complex (MAC) proteins of the complement system (C6, C7, C8α, C8β and C9) and perforin (PF). Members of this protein family are pore-forming toxins (PFTs).[2] In eukaryotes, MACPF proteins play a role in immunity and development.[3]

Archetypal members of the family are complement C9 and perforin, both of which function in human immunity.[4] C9 functions by punching holes in the membranes of Gram-negative bacteria. Perforin is released by cytotoxic T cells and lyses virally infected and transformed cells. In addition, perforin permits delivery of cytotoxic proteases called granzymes that cause cell death.[5] Deficiency of either protein can result in human disease.[6][7] Structural studies reveal that MACPF domains are related to cholesterol-dependent cytolysins (CDCs), a family of pore forming toxins previously thought to only exist in bacteria.[8][9]


As of early 2016, there are three families belonging to the MACPF superfamily:

Membrane Attack Complex/Perforin (MACPF) Family

Proteins containing MACPF domains play key roles in vertebrate immunity, embryonic development, and neural-cell migration.[10] The ninth component of complement and perforin form oligomeric pores that lyse bacteria and kill virus-infected cells, respectively. The crystal structure of a bacterial MACPF protein, Plu-MACPF from Photorhabdus luminescens was determined (PDB: 2QP2​).[11] The MACPF domain is structurally similar to pore-forming cholesterol-dependent cytolysins from gram-positive bacteria, suggesting that MACPF proteins create pores and disrupt cell membranes similar to cytolysin. A representative list of proteins belonging to the MACPF family can be found in the Transporter Classification Database.

Biological roles of MACPF domain containing proteins

Many proteins belonging to the MACPF superfamily play key roles in plant and animal immunity.

Complement proteins C6-C9 all contain a MACPF domain and assemble into the membrane attack complex. C6, C7 and C8β appear to be non-lytic and function as scaffold proteins within the MAC. In contrast both C8α and C9 are capable of lysing cells. The final stage of MAC formation involves polymerisation of C9 into a large pore that punches a hole in the outer membrane of gram-negative bacteria.

Perforin is stored in granules within cytotoxic T-cells and is responsible for killing virally infected and transformed cells. Perforin functions via two distinct mechanisms. Firstly, like C9, high concentrations of perforin can form pores that lyse cells. Secondly, perforin permits delivery of the cytotoxic granzymes A and B into target cells. Once delivered, granzymes are able to induce apoptosis and cause target cell death.[5][12]

The plant protein CAD1 (TC# 1.C.39.11.3) functions in the plant immune response to bacterial infection.[13][14]

The sea anemone Actineria villosa uses a MACPF (AvTX-60A; TC# 1.C.39.10.1)protein as a lethal toxin.[15]

MACPF proteins are also important for the invasion of the Malarial parasite into the mosquito host and the liver.[16][17]

Not all MACPF proteins function in defence or attack. For example, astrotactin-1 (TC# 9.B.87.3.1) is involved in neural cell migration in mammals and apextrin (TC# 1.C.39.7.4) is involved in sea urchin (Heliocidaris erythrogramma) development.[18][19] Drosophila Torso-like protein (TC# 1.C.39.15.1), which controls embryonic patterning,[20] also contains a MACPF domain.[8] Its function is implicated in a receptor tyrosine kinase signaling pathway that specifies differentiation and terminal cell fate.

Functionally uncharacterised MACPF proteins are sporadically distributed in bacteria. Several species of Chlamydia contain MACPF proteins.[21] The insect pathogenic bacteria Photorhabdus luminescens also contains a MACPF protein, however, this molecule appears non-lytic.[8]

Structure and mechanism

The X-ray crystal structure of Plu-MACPF, a protein from the insect pathogenic enterobacteria Photorhabdus luminescens has been determined (figure 1).[5] These data reveal that the MACPF domain is homologous to pore forming cholesterol dependent cytolysins (CDC's) from gram-positive pathogenic bacteria such as Clostridium perfringens (which causes gas gangrene). The amino acid sequence identity between the two families is extremely low, and the relationship is not detectable using conventional sequence based data mining techniques.[8]

It is suggested that MACPF proteins and CDCs form pores in the same way (figure 1).[8] Specifically it is hypothesised that MACPF proteins oligomerise to form a large circular pore (figure 2). A concerted conformational change within each monomer then results in two α-helical regions unwinding to form four amphipathic β-strands that span the membrane of the target cell.[8] Like CDC's MACPF proteins are thus β-pore forming toxins that act like a molecular hole punch.

Other crystal structures for members of the MACPF superfamily can be found in RCSB: i.e., 3KK7​, 3QOS​, 3QQH​, 3RD7​, 3OJY

Mechanism of membrane attack by MACPF proteins
Figure 1: a) The structure of the CDC perfringolysin O [22][1] and b) the structure of Plu-MACPF [8][2]. In both proteins the two small clusters of α-helicesl that are proposed to unwind and pierce the membrane are in pink.
Figure 2: Molecular model of the pre-pore form of a MACPF protein based upon the structure of pneunolysin.[23]

Control of MACPF proteins

Complement regulatory proteins such as CD59 function as MAC inhibitors and prevent inappropriate activity of complement against self cells (Figure 3). Biochemical studies have revealed the peptide sequences in C8α and C9 that bind to CD59.[24][25] Analysis of the MACPF domain structures reveals that these sequences map to the second cluster of helices that unfurl to span the membrane. It is therefore suggested that CD59 directly inhibits the MAC by interfering with conformational change in one of the membrane spanning regions.[8]

Other proteins that bind to the MAC include C8γ. This protein belongs to the lipocalin family and interacts with C8α. The binding site on C8α is known, however, the precise role of C8γ in the MAC remains to be understood.[26][27]

Proteins that bind MACPF domains
Figure 3: NMR structure of CD59.[28] [3].
Figure 3: Crystal structure of C8γ (green) with peptide from C8α (cyan).[27] [4].

Role in human disease

Deficiency of C9, or other components of the MAC results in an increased susceptibility to diseases caused by gram-negative bacteria such as meningococcal meningitis.[29] Overactivity of MACPF proteins can also cause disease. Most notably, deficiency of the MAC inhibitor CD59 results in an overactivity of complement and Paroxysmal nocturnal hemoglobinuria.[30]

Perforin deficiency results in the commonly fatal disorder familial hemophagocytic lymphohistiocytosis (FHL or HLH).[6] This disease is characterised by an overactivation of lymphocytes which results in cytokine mediated organ damage.[31]

The MACPF protein DBCCR1 may function as a tumor suppressor in bladder cancer.[3][32]

Human proteins containing this domain

C6; C7; C8A; C8B; C9; FAM5B; FAM5C; MPEG1; PRF1


  1. ^ Gilbert, Robert J. C.; Mikelj, Miha; Dalla Serra, Mauro; Froelich, Christopher J.; Anderluh, Gregor (1 June 2013). "Effects of MACPF/CDC proteins on lipid membranes". Cellular and Molecular Life Sciences. 70 (12): 2083–2098. doi:10.1007/s00018-012-1153-8. ISSN 1420-9071. PMID 22983385.
  2. ^ Peitsch MC, Tschopp J (1991). "Assembly of macromolecular pores by immune defense systems". Curr. Opin. Cell Biol. 3 (4): 710–6. doi:10.1016/0955-0674(91)90045-Z. PMID 1722985.
  3. ^ a b Rosado, Carlos J.; Kondos, Stephanie; Bull, Tara E.; Kuiper, Michael J.; Law, Ruby H. P.; Buckle, Ashley M.; Voskoboinik, Ilia; Bird, Phillip I.; Trapani, Joseph A. (1 September 2008). "The MACPF/CDC family of pore-forming toxins". Cellular Microbiology. 10 (9): 1765–1774. doi:10.1111/j.1462-5822.2008.01191.x. ISSN 1462-5822. PMC 2654483. PMID 18564372.
  4. ^ Tschopp J, Masson D, Stanley KK (1986). "Structural/functional similarity between proteins involved in complement- and cytotoxic T-lymphocyte-mediated cytolysis". Nature. 322 (6082): 831–4. doi:10.1038/322831a0. PMID 2427956.
  5. ^ a b Voskoboinik I, Smyth MJ, Trapani JA (2006). "Perforin-mediated target-cell death and immune homeostasis". Nat. Rev. Immunol. 6 (12): 940–52. doi:10.1038/nri1983. PMID 17124515.
  6. ^ a b Voskoboinik I, Sutton VR, Ciccone A, et al. (2007). "Perforin activity and immune homeostasis: the common A91V polymorphism in perforin results in both presynaptic and postsynaptic defects in function". Blood. 110 (4): 1184–90. doi:10.1182/blood-2007-02-072850. PMID 17475905.
  7. ^ Witzel-Schlömp K, Späth PJ, Hobart MJ, et al. (1997). "The human complement C9 gene: identification of two mutations causing deficiency and revision of the gene structure". J. Immunol. 158 (10): 5043–9. PMID 9144525.
  8. ^ a b c d e f g h Rosado CJ, Buckle AM, Law RH, et al. (2007). "A Common Fold Mediates Vertebrate Defense and Bacterial Attack". Science. 317 (5844): 1548–51. doi:10.1126/science.1144706. PMID 17717151.
  9. ^ Michael A. Hadders; Dennis X. Beringer & Piet Gros (2007). "Structure of C8-MACPF Reveals Mechanism of Membrane Attack in Complement Immune Defense". Science. 317 (5844): 1552–1554. doi:10.1126/science.1147103. PMID 17872444.
  10. ^ Anderluh, Gregor; Lakey, Jeremy H. (1 October 2008). "Disparate proteins use similar architectures to damage membranes". Trends in Biochemical Sciences. 33 (10): 482–490. doi:10.1016/j.tibs.2008.07.004. ISSN 0968-0004. PMID 18778941.
  11. ^ Rosado, Carlos J.; Buckle, Ashley M.; Law, Ruby H. P.; Butcher, Rebecca E.; Kan, Wan-Ting; Bird, Catherina H.; Ung, Kheng; Browne, Kylie A.; Baran, Katherine (14 September 2007). "A common fold mediates vertebrate defense and bacterial attack". Science. 317 (5844): 1548–1551. doi:10.1126/science.1144706. ISSN 1095-9203. PMID 17717151.
  12. ^ Kaiserman D, Bird CH, Sun J, et al. (2006). "The major human and mouse granzymes are structurally and functionally divergent". J. Cell Biol. 175 (4): 619–30. doi:10.1083/jcb.200606073. PMC 2064598. PMID 17116752.
  13. ^ Morita-Yamamuro C, Tsutsui T, Sato M, et al. (2005). "The Arabidopsis gene CAD1 controls programmed cell death in the plant immune system and encodes a protein containing a MACPF domain". Plant Cell Physiol. 46 (6): 902–12. doi:10.1093/pcp/pci095. PMID 15799997.
  14. ^ Tsutsui, Tomokazu; Morita-Yamamuro, Chizuko; Asada, Yutaka; Minami, Eiichi; Shibuya, Naoto; Ikeda, Akira; Yamaguchi, Junji (1 September 2006). "Salicylic acid and a chitin elicitor both control expression of the CAD1 gene involved in the plant immunity of Arabidopsis". Bioscience, Biotechnology, and Biochemistry. 70 (9): 2042–2048. doi:10.1271/bbb.50700. hdl:2115/14840. ISSN 0916-8451. PMID 16960394.
  15. ^ Oshiro N, Kobayashi C, Iwanaga S, et al. (2004). "A new membrane-attack complex/perforin (MACPF) domain lethal toxin from the nematocyst venom of the Okinawan sea anemone Actineria villosa". Toxicon. 43 (2): 225–8. doi:10.1016/j.toxicon.2003.11.017. PMID 15019483.
  16. ^ Kadota K, Ishino T, Matsuyama T, Chinzei Y, Yuda M (2004). "Essential role of membrane-attack protein in malarial transmission to mosquito host". Proc. Natl. Acad. Sci. U.S.A. 101 (46): 16310–5. doi:10.1073/pnas.0406187101. PMC 524694. PMID 15520375.
  17. ^ Ishino T, Chinzei Y, Yuda M (2005). "A Plasmodium sporozoite protein with a membrane attack complex domain is required for breaching the liver sinusoidal cell layer prior to hepatocyte infection". Cell. Microbiol. 7 (2): 199–208. doi:10.1111/j.1462-5822.2004.00447.x. PMID 15659064.
  18. ^ Zheng C, Heintz N, Hatten ME (1996). "CNS gene encoding astrotactin, which supports neuronal migration along glial fibers". Science. 272 (5260): 417–9. doi:10.1126/science.272.5260.417. PMID 8602532.
  19. ^ Haag ES, Sly BJ, Andrews ME, Raff RA (1999). "Apextrin, a novel extracellular protein associated with larval ectoderm evolution in Heliocidaris erythrogramma". Dev. Biol. 211 (1): 77–87. doi:10.1006/dbio.1999.9283. PMID 10373306.
  20. ^ Martin JR, Raibaud A, Ollo R (1994). "Terminal pattern elements in Drosophila embryo induced by the torso-like protein". Nature. 367 (6465): 741–5. doi:10.1038/367741a0. PMID 8107870.
  21. ^ Ponting CP (1999). "Chlamydial homologues of the MACPF (MAC/perforin) domain". Curr. Biol. 9 (24): R911–3. doi:10.1016/S0960-9822(00)80102-5. PMID 10608922.
  22. ^ Rossjohn J, Feil SC, McKinstry WJ, Tweten RK, Parker MW (1997). "Structure of a cholesterol-binding, thiol-activated cytolysin and a model of its membrane form". Cell. 89 (5): 685–92. doi:10.1016/S0092-8674(00)80251-2. PMID 9182756.
  23. ^ Tilley SJ, Orlova EV, Gilbert RJ, Andrew PW, Saibil HR (2005). "Structural basis of pore formation by the bacterial toxin pneumolysin". Cell. 121 (2): 247–56. doi:10.1016/j.cell.2005.02.033. PMID 15851031.
  24. ^ Huang Y, Qiao F, Abagyan R, Hazard S, Tomlinson S (2006). "Defining the CD59-C9 binding interaction". J. Biol. Chem. 281 (37): 27398–404. doi:10.1074/jbc.M603690200. PMID 16844690.
  25. ^ Lockert DH, Kaufman KM, Chang CP, Hüsler T, Sodetz JM, Sims PJ (1995). "Identity of the segment of human complement C8 recognized by complement regulatory protein CD59". J. Biol. Chem. 270 (34): 19723–8. doi:10.1074/jbc.270.8.3483. PMID 7544344.
  26. ^ Schreck SF, Plumb ME, Platteborze PL, et al. (1998). "Expression and characterization of recombinant subunits of human complement component C8: further analysis of the function of C8 alpha and C8 gamma". J. Immunol. 161 (1): 311–8. PMID 9647238.
  27. ^ a b Lovelace LL, Chiswell B, Slade DJ, Sodetz JM, Lebioda L (2007). "Crystal structure of complement protein C8gamma in complex with a peptide containing the C8gamma binding site on C8alpha: Implications for C8gamma ligand binding". Molecular Immunology. 45 (3): 750–6. doi:10.1016/j.molimm.2007.06.359. PMID 17692377.
  28. ^ Kieffer B, Driscoll PC, Campbell ID, Willis AC, van der Merwe PA, Davis SJ (1994). "Three-dimensional solution structure of the extracellular region of the complement regulatory protein CD59, a new cell-surface protein domain related to snake venom neurotoxins". Biochemistry. 33 (15): 4471–82. doi:10.1021/bi00181a006. PMID 7512825.
  29. ^ Kira R, Ihara K, Takada H, Gondo K, Hara T (1998). "Nonsense mutation in exon 4 of human complement C9 gene is the major cause of Japanese complement C9 deficiency". Hum. Genet. 102 (6): 605–10. doi:10.1007/s004390050749. PMID 9703418.
  30. ^ Walport, Mark J. (2001). "Complement. First of two parts". N. Engl. J. Med. 344 (14): 1058–66. doi:10.1056/NEJM200104053441406. PMID 11287977.
  31. ^ Verbsky JW, Grossman WJ (2006). "Hemophagocytic lymphohistiocytosis: diagnosis, pathophysiology, treatment, and future perspectives". Ann. Med. 38 (1): 20–31. doi:10.1080/07853890500465189. PMID 16448985.
  32. ^ Wright KO, Messing EM, Reeder JE (2004). "DBCCR1 mediates death in cultured bladder tumor cells". Oncogene. 23 (1): 82–90. doi:10.1038/sj.onc.1206642. PMID 14712213.

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

MAC/Perforin domain Provide feedback

The membrane-attack complex (MAC) of the complement system forms transmembrane channels. These channels disrupt the phospholipid bilayer of target cells, leading to cell lysis and death. A number of proteins participate in the assembly of the MAC. Freshly activated C5b binds to C6 to form a C5b-6 complex, then to C7 forming the C5b-7 complex. The C5b-7 complex binds to C8, which is composed of three chains (alpha, beta, and gamma), thus forming the C5b-8 complex. C5b-8 subsequently binds to C9 and acts as a catalyst in the polymerisation of C9. Active MAC has a subunit composition of C5b-C6-C7-C8-C9{n}. Perforin is a protein found in cytolytic T-cell and killer cells. In the presence of calcium, perforin polymerises into transmembrane tubules and is capable of lysing, non-specifically, a variety of target cells. There are a number of regions of similarity in the sequences of complement components C6, C7, C8-alpha, C8-beta, C9 and perforin. The X-ray crystal structure of a MACPF domain reveals that it shares a common fold with bacterial cholesterol dependent cytolysins (PF01289) such as perfringolysin O. Three key pieces of evidence suggests that MACPF domains and CDCs are homologous: Functional similarity (pore formation), conservation of three glycine residues at a hinge in both families and conservation of a complex core fold [1].

Literature references

  1. Rosado CJ, Buckle AM, Law RH, Butcher RE, Kan WT, Bird CH, Ung K, Browne KA, Baran K, Bashtannyk-Puhalovich TA, Faux NG, Wong W, Porter CJ, Pike RN, Ellisdon AM, Pearce MC, Bottomley SP, Emsley J, Smith AI, Rossjohn J, Hartland EL, Voskoboinik I, Trapani , Science. 2007;317:1548-1551.: A common fold mediates vertebrate defense and bacterial attack. PUBMED:17717151 EPMC:17717151

  2. Hadders MA, Beringer DX, Gros P; , Science. 2007;317:1552-1554.: Structure of C8alpha-MACPF reveals mechanism of membrane attack in complement immune defense. PUBMED:17872444 EPMC:17872444

External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR020864

The membrane attack complex/perforin (MACPF) domain is conserved in bacteria, fungi, mammals and plants. It was originally identified and named as being common to five complement components (C6, C7, C8-alpha, C8-beta, and C9) and perforin. These molecules perform critical functions in innate and adaptive immunity. The MAC family proteins and perforin are known to participate in lytic pore formation. In response to pathogen infection, a sequential and highly specific interaction between the constituent elements occurs to form transmembrane channels which are known as the membrane-attack complex (MAC).Only a few other MACPF proteins have been characterised and several are thought to form pores for invasion or protection [ PUBMED:16900325 , PUBMED:17717151 , PUBMED:18440555 ]. Examples are proteins from malarial parasites [ PUBMED:15659064 ], the cytolytic toxins from sea anemones [ PUBMED:17368498 ], and proteins that provide plant immunity [ PUBMED:16900325 , PUBMED:15799997 ]. Functionally uncharacterised MACPF proteins are also evident in pathogenic bacteria such as Chlamydia spp [ PUBMED:10608922 ] and Photorhabdus luminescens (Xenorhabdus luminescens) [ PUBMED:17717151 ].

The MACPF domain is commonly found to be associated with other N- and C-terminal domains, such as TSP1 (see PROSITEDOC ), LDLRA (see PROSITEDOC ), EGF-like (see PROSITEDOC ),Sushi/CCP/SCR (see PROSITEDOC ), FIMAC or C2 (see PROSITEDOC ). They probably control or target MACPF function [ PUBMED:17717151 , PUBMED:17872444 ]. The MACPF domain oligomerizes, undergoes conformational change, and is required for lytic activity.

The MACPF domain consists of a central kinked four-stranded antiparallel beta sheet surrounded by alpha helices and beta strands, forming two structural segments. Overall, the MACPF domain has a thin L-shaped appearance. MACPF domains exhibit limited sequence similarity but contain a signature [YW]-G-[TS]-H-[FY]-x(6)-G-G motif [ PUBMED:17717151 , PUBMED:18440555 , PUBMED:17872444 ].

Some proteins known to contain a MACPF domain are listed below:

  • Vertebrate complement proteins C6 to C9. Complement factors C6 to C9 assemble to form a scaffold, the membrane attack complex (MAC), that permits C9 polymerisation into pores that lyse Gram-negative pathogens [ PUBMED:18440555 , PUBMED:17872444 ].
  • Vertebrate perforin. It is delivered by natural killer cells and cytotoxic T lymphocytes and forms oligomeric pores (12 to 18 monomers) in the plasma membrane of either virus-infected or transformed cells.
  • Arabidopsis thaliana (Mouse-ear cress) constitutively activated cell death 1 (CAD1) protein. It is likely to act as a mediator that recognises plant signals for pathogen infection [ PUBMED:15799997 ].
  • Arabidopsis thaliana (Mouse-ear cress) necrotic spotted lesions 1 (NSL1) protein [ PUBMED:16900325 ].
  • Venomous sea anemone Phyllodiscus semoni (Night anemone) toxins PsTX-60A and PsTX-60B [ PUBMED:17368498 ].
  • Venomous sea anemone Actineria villosa (Okinawan sea anemone) toxin AvTX-60A [ PUBMED:17368498 ].
  • Plasmodium sporozoite microneme protein essential for cell traversal 2 (SPECT2). It is essential for the membrane-wounding activity of the sporozoite and is involved in its traversal of the sinusoidal cell layer prior to hepatocyte-infection [ PUBMED:15659064 ].
  • P. luminescens Plu-MACPF. Although nonlytic, it was shown to bind to cell membranes [ PUBMED:17717151 ].
  • Chlamydial putative uncharacterised protein CT153 [ PUBMED:10608922 ].

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan CDC (CL0293), which has the following description:

This superfamily includes the MACPF domain as well as the Cholesterol-dependent cytolysins [1].

The clan contains the following 8 members:

Aegerolysin Anemone_cytotox FB_lectin Gasdermin MACPF TDH Thaumatin Thiol_cytolysin


We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets and the UniProtKB sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

Representative proteomes UniProt
Jalview View  View  View  View  View  View  View 
HTML View             
PP/heatmap 1            

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

Representative proteomes UniProt

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

Representative proteomes UniProt
Raw Stockholm Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...


This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: SMART
Previous IDs: none
Type: Domain
Sequence Ontology: SO:0000417
Author: SMART
Number in seed: 40
Number in full: 6884
Average length of the domain: 192.30 aa
Average identity of full alignment: 17 %
Average coverage of the sequence by the domain: 29.54 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 57096847 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 21.5 21.5
Trusted cut-off 21.5 21.5
Noise cut-off 21.4 21.4
Model length: 212
Family (HMM) version: 21
Download: download the raw HMM for this family

Species distribution

Sunburst controls


Weight segments by...

Change the size of the sunburst


Colour assignments

Archea Archea Eukaryota Eukaryota
Bacteria Bacteria Other sequences Other sequences
Viruses Viruses Unclassified Unclassified
Viroids Viroids Unclassified sequence Unclassified sequence


Align selected sequences to HMM

Generate a FASTA-format file

Clear selection

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls


The tree shows the occurrence of this domain across different species. More...


Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.


For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the MACPF domain has been found. There are 252 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein sequence.

Loading structure mapping...

AlphaFold Structure Predictions

The list of proteins below match this family and have AlphaFold predicted structures. Click on the protein accession to view the predicted structure.

Protein Predicted structure External Information
A0A0G2JUC0 View 3D Structure Click here
A0A0G2JYU3 View 3D Structure Click here
A0A0G2K7X7 View 3D Structure Click here
A0A0P0WVA3 View 3D Structure Click here
A0A0R0IEC2 View 3D Structure Click here
A0A0R4IHJ2 View 3D Structure Click here
A0A1D6HJL9 View 3D Structure Click here
A0A1D6MC49 View 3D Structure Click here
A0A1D6NC66 View 3D Structure Click here
A0A1D6NQZ0 View 3D Structure Click here
A0A2R8RIA8 View 3D Structure Click here
A0A5K1K8C6 View 3D Structure Click here
A1L314 View 3D Structure Click here
A8HAJ8 View 3D Structure Click here
A9C3Q1 View 3D Structure Click here
B0R063 View 3D Structure Click here
B0R0K7 View 3D Structure Click here
B4FA40 View 3D Structure Click here
B8A565 View 3D Structure Click here
C0PEL1 View 3D Structure Click here
C0PFJ5 View 3D Structure Click here
C0PJM0 View 3D Structure Click here
D3YXF5 View 3D Structure Click here
D3ZWD6 View 3D Structure Click here
E7F996 View 3D Structure Click here
E7FA66 View 3D Structure Click here
E7FFP8 View 3D Structure Click here
E9Q6D8 View 3D Structure Click here
E9QB99 View 3D Structure Click here
F1Q6C6 View 3D Structure Click here
F1Q6F3 View 3D Structure Click here
F1Q7Y2 View 3D Structure Click here
F1QF24 View 3D Structure Click here
F1QYG6 View 3D Structure Click here
F1R8E0 View 3D Structure Click here
F8W236 View 3D Structure Click here
I1J7P0 View 3D Structure Click here
I1K3P4 View 3D Structure Click here
I1K540 View 3D Structure Click here
I1K541 View 3D Structure Click here
I1KLN5 View 3D Structure Click here
I1KNZ2 View 3D Structure Click here
I1KQD2 View 3D Structure Click here
I1KS38 View 3D Structure Click here
I1LN51 View 3D Structure Click here
I1M079 View 3D Structure Click here
I1M1M7 View 3D Structure Click here
I1MEX4 View 3D Structure Click here
I1MJV0 View 3D Structure Click here
I1MYD0 View 3D Structure Click here
I3IS28 View 3D Structure Click here
K7KCN7 View 3D Structure Click here
K7KRA2 View 3D Structure Click here
K7KRH8 View 3D Structure Click here
K7LVC3 View 3D Structure Click here
K7MTU6 View 3D Structure Click here
K7TWM4 View 3D Structure Click here
O60477 View 3D Structure Click here
O75129 View 3D Structure Click here
P02748 View 3D Structure Click here
P06683 View 3D Structure Click here
P07357 View 3D Structure Click here
P07358 View 3D Structure Click here
P10643 View 3D Structure Click here
P10820 View 3D Structure Click here
P13671 View 3D Structure Click here
P14222 View 3D Structure Click here
P35763 View 3D Structure Click here
P55314 View 3D Structure Click here
Q2M385 View 3D Structure Click here
Q499E0 View 3D Structure Click here
Q54I05 View 3D Structure Click here
Q5JN47 View 3D Structure Click here
Q5RKV8 View 3D Structure Click here
Q62930 View 3D Structure Click here
Q6DFY8 View 3D Structure Click here
Q6I604 View 3D Structure Click here
Q6K741 View 3D Structure Click here
Q6Z745 View 3D Structure Click here
Q76B58 View 3D Structure Click here
Q7XID1 View 3D Structure Click here
Q80Z10 View 3D Structure Click here
Q811M5 View 3D Structure Click here
Q8BH35 View 3D Structure Click here
Q8I2S3 View 3D Structure Click here
Q8I5P0 View 3D Structure Click here
Q8IB29 View 3D Structure Click here
Q8K182 View 3D Structure Click here
Q8K1M7 View 3D Structure Click here
Q8K1M8 View 3D Structure Click here
Q8L612 View 3D Structure Click here
Q920P3 View 3D Structure Click here
Q925T8 View 3D Structure Click here
Q94J22 View 3D Structure Click here
Q9C0B6 View 3D Structure Click here
Q9C7N2 View 3D Structure Click here
Q9SGN6 View 3D Structure Click here
Q9STW5 View 3D Structure Click here
Q9U0J9 View 3D Structure Click here
Q9WV57 View 3D Structure Click here
X1WHJ5 View 3D Structure Click here