Summary: Ethanolamine utilisation protein EutN/carboxysome
Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.
The Pfam group coordinates the annotation of Pfam families in Wikipedia, but we have not yet assigned a Wikipedia article to this family. If you think that a particular Wikipedia article provides good annotation, please let us know.
This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.
Ethanolamine utilisation protein EutN/carboxysome Provide feedback
The crystal structure of EutN contains a central five-stranded beta-barrel, with an alpha-helix at the open end of this barrel ( PDB:2HD3). The structure also contains three additional beta-strands, which help the formation of a tight hexamer, with a hole in the center. this suggests that EutN forms a pore, with an opening of 26 Angstrom in diameter on one face and 14 Angstrom on the other face [2]. EutN is involved in the cobalamin-dependent degradation of ethanolamine [1].
Literature references
-
Kofoid E, Rappleye C, Stojiljkovic I, Roth J; , J Bacteriol 1999;181:5317-5329.: The 17-gene ethanolamine (eut) operon of Salmonella typhimurium encodes five homologues of carboxysome shell proteins. PUBMED:10464203 EPMC:10464203
-
Forouhar F, Kuzin A, Seetharaman J, Lee I, Zhou W, Abashidze M, Chen Y, Yong W, Janjua H, Fang Y, Wang D, Cunningham K, Xiao R, Acton TB, Pichersky E, Klessig DF, Porter CW, Montelione GT, Tong L;, J Struct Funct Genomics. 2007;8:37-44.: Functional insights from structural genomics. PUBMED:17588214 EPMC:17588214
This tab holds annotation information from the InterPro database.
InterPro entry IPR004992
The ethanolamine utilization protein EutN is involved in the cobalamin-dependent degradation of ethanolamine [PUBMED:10464203]. The crystal structure of EutN contains a central five-stranded beta-barrel, with an alpha-helix at the open end of this barrel (PDB: 2HD3). The structure also contains three additional beta-strands, which help the formation of a tight hexamer, with a hole in the centre. This suggests that EutN forms a pore, with an opening of 26 Amstrong in diameter on one face and 14 Amstrong on the other face [PUBMED:17588214].
Beside the Escherichia coli ethanolamine utilization protein EutN and the Synechocystis sp. carboxysome (beta-type) structural protein CcmL, this family also includes alpha-type carboxysome structural proteins CsoS4A and CsoS4B (previously known as OrfA and OrfB), propanediol utilizationprotein PduN, and some hypothetical homologous of various bacterial microcompartments. The carboxysome, a polyhedral organelle, participates in carbon fixation by sequestering enzymes. It is the prototypical bacterial microcompartment. Its enzymatic components, ribulose bisphosphate carboxylase/oxygenase(RuBisCO) and carbonic anhydrase (CA), are surrounded by a polyhedral protein shell. Similarly, the ethanolamine utilization (eut) microcompartment, and the 1,2-propanediol utilization (pdu) microcompartment encapsulate the enzymes necessary for the process of cobalamin-dependent ethanolamine degradation, and coenzyme B12-dependent degradation of 1,2-propanediol, respectively, within its polyhedral protein shells. It is interesting that both carboxysome structural proteins CcmL and CsoS4A assemble as pentamers in the crystal structures, which might constitute the twelve pentameric vertices of a regular icosahedral carboxysome. However, the reported EutN structure is hexameric rather than pentameric. The absence of pentamers in Eut microcompartments might lead to less-regular icosahedral shell shapes. Due to the lack of structure evidence, the functional roles of the CsoS4A adjacent paralog, CsoS4B, and propanediol utilization protein PduN are not yet clear [PUBMED:10464203, PUBMED:19177356, PUBMED:18248510, PUBMED:17511640, PUBMED:18258595, PUBMED:18937343, PUBMED:17578868, PUBMED:18758469, PUBMED:16525780, PUBMED:18679172, PUBMED:15862091, PUBMED:12554704, PUBMED:11722879, PUBMED:18974784, PUBMED:17897412, PUBMED:18332146, PUBMED:18292340, PUBMED:17993516, PUBMED:2656649, PUBMED:17669419, PUBMED:3045078, PUBMED:4127632, PUBMED:4355679, PUBMED:7868611, PUBMED:7934888, PUBMED:8491708, PUBMED:9245772, PUBMED:9891798, PUBMED:12520366, PUBMED:12923081, PUBMED:14729686, PUBMED:15516577, PUBMED:16081736, PUBMED:16385071, PUBMED:16585748, PUBMED:17028023, PUBMED:179979, PUBMED:190964].
This entry represents a family of related bacterial proteins with roles in ethanolamine and carbon dioxide metabolism.
Domain organisation
Below is a listing of the unique domain organisations or architectures in which this domain is found. More...
Loading domain graphics...
Pfam Clan
This family is a member of clan OB (CL0021), which has the following description:
The OB (oligonucleotide/oligosaccharide binding) was defined by Murzin [1]. The common part of the OB-fold, has a five-stranded beta-sheet coiled to form a closed beta-barrel. This barrel is capped by an alpha-helix located between the third and fourth strands [1].
The clan contains the following 110 members:
BOF BRCA-2_OB1 BRCA-2_OB3 CcmE CDC13_N Cdc13_OB2 CDC24_OB1 CDC24_OB2 CDC24_OB3 CSD CSD2 CusF_Ec CysA_C_terminal DNA_ligase_A_C DNA_ligase_C DNA_ligase_OB DNA_ligase_OB_2 DNA_pol_D_N DUF1344 DUF1449 DUF2110 DUF223 DUF2815 DUF3127 DUF3217 DUF3299 DUF4539 DUF5666 DUF961 EFP eIF-1a eIF-5a Elong-fact-P_C EutN_CcmL EXOSC1 FbpC_C_terminal Fimbrial_PilY2 GlcV_C_terminal Gp138_N gp32 Gp5_OB HIN ID MCM_OB mRNA_cap_C MRP-S35 NfeD NigD_N NlpE_C OB_aCoA_assoc OB_Dis3 OB_MalK OB_NTP_bind OB_RNB PCB_OB Phage_base_V Phage_DNA_bind Phage_SSB Pol_alpha_B_N POT1 POT1PC Prot_ATP_ID_OB Prot_ATP_OB_N RecG_wedge RecJ_OB RecO_N RecO_N_2 Rep-A_N Rep_fac-A_3 Rep_fac-A_C REPA_OB_2 Rho_RNA_bind Ribosom_S12_S23 Ribosomal_L2 Ribosomal_S17 Ribosomal_S28e Ribosomal_S4e RMI1_C RMI1_N RMI2 RNA_pol_Rbc25 RNA_pol_Rpb8 RNA_pol_RpbG RNase_II_C_S1 RPA43_OB Rrp44_CSD1 Rrp44_S1 RsgA_N RuvA_N S1 S1-like S1_2 SfsA_N SSB ssDBP Stn1 TEBP_beta Ten1 Ten1_2 TOBE TOBE_2 TOBE_3 TPP1 TRAM TRAM_2 tRNA_anti-codon tRNA_anti-like tRNA_anti_2 tRNA_bind TTC5_OBAlignments
We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the UniProtKB sequence database, the NCBI sequence database, and our metagenomics sequence database. More...
View options
We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.
Seed (181) |
Full (1241) |
Representative proteomes | UniProt (6982) |
NCBI (6040) |
Meta (325) |
||||
---|---|---|---|---|---|---|---|---|---|
RP15 (56) |
RP35 (201) |
RP55 (315) |
RP75 (521) |
||||||
Jalview | |||||||||
HTML | |||||||||
PP/heatmap | 1 |
1Cannot generate PP/Heatmap alignments for seeds; no PP data available
Key:
available,
not generated,
— not available.
Format an alignment
Download options
We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.
Seed (181) |
Full (1241) |
Representative proteomes | UniProt (6982) |
NCBI (6040) |
Meta (325) |
||||
---|---|---|---|---|---|---|---|---|---|
RP15 (56) |
RP35 (201) |
RP55 (315) |
RP75 (521) |
||||||
Raw Stockholm | |||||||||
Gzipped |
You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.
HMM logo
HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...
Trees
This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.
Note: You can also download the data file for the tree.
Curation and family details
This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.
Curation
Seed source: | Pfam-B_3053 (release 6.5) |
Previous IDs: | none |
Type: | Domain |
Sequence Ontology: | SO:0000417 |
Author: |
Mifsud W |
Number in seed: | 181 |
Number in full: | 1241 |
Average length of the domain: | 82.10 aa |
Average identity of full alignment: | 39 % |
Average coverage of the sequence by the domain: | 89.19 % |
HMM information
HMM build commands: |
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 47079205 -E 1000 --cpu 4 HMM pfamseq
|
||||||||||||
Model details: |
|
||||||||||||
Model length: | 83 | ||||||||||||
Family (HMM) version: | 14 | ||||||||||||
Download: | download the raw HMM for this family |
Species distribution
Sunburst controls
HideWeight segments by...
Change the size of the sunburst
Colour assignments
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Selections
Align selected sequences to HMM
Generate a FASTA-format file
Clear selection
This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...
Tree controls
HideThe tree shows the occurrence of this domain across different species. More...
Loading...
Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.
Interactions
There is 1 interaction for this family. More...
EutN_CcmLStructures
For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the EutN_CcmL domain has been found. There are 240 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein sequence.
Loading structure mapping...