Summary: Immune inhibitor A peptidase M6
Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.
The Pfam group coordinates the annotation of Pfam families in Wikipedia, but we have not yet assigned a Wikipedia article to this family. If you think that a particular Wikipedia article provides good annotation, please let us know.
This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.
Immune inhibitor A peptidase M6 Provide feedback
The insect pathogenic Gram-positive Bacillus thuringiensis secretes immune inhibitor A, a metallopeptidase, which specifically cleaves host antibacterial proteins. A homologue of immune inhibitor A, PrtV, has been identified in the Gram-negative human pathogen Vibrio cholerae [4].
Literature references
-
Grandvalet C, Gominet M, Lereclus D; , Microbiology 2001;147:1805-1813.: Identification of genes involved in the activation of the Bacillus thuringiensis inhA metalloprotease gene at the onset of sporulation. PUBMED:11429458 EPMC:11429458
-
Charlton S, Moir AJ, Baillie L, Moir A; , J Appl Microbiol 1999;87:241-245.: Characterization of the exosporium of Bacillus cereus. PUBMED:10475957 EPMC:10475957
-
Lovgren A, Zhang M, Engstrom A, Dalhammar G, Landen R; , Mol Microbiol 1990;4:2137-2146.: Molecular characterization of immune inhibitor A, a secreted virulence protease from Bacillus thuringiensis. PUBMED:2089225 EPMC:2089225
-
Ogierman MA, Fallarino A, Riess T, Williams SG, Attridge SR, Manning PA; , J Bacteriol 1997;179:7072-7080.: Characterization of the Vibrio cholerae El Tor lipase operon lipAB and a protease gene downstream of the hly region. PUBMED:9371455 EPMC:9371455
-
Fedhila S, Nel P, Lereclus D; , J Bacteriol 2002;184:3296-3304.: The InhA2 metalloprotease of Bacillus thuringiensis strain 407 is required for pathogenicity in insects infected via the oral route. PUBMED:12029046 EPMC:12029046
Internal database links
SCOOP: | MAM Peptidase_M7 |
External database links
MEROPS: | M6 |
This tab holds annotation information from the InterPro database.
InterPro entry IPR008757
Over 70 metallopeptidase families have been identified to date. In these enzymes a divalent cation which is usually zinc, but may be cobalt, manganese or copper, activates the water molecule. The metal ion is held in place by amino acid ligands, usually three in number. In some families of co-catalytic metallopeptidases, two metal ions are observed in crystal structures ligated by five amino acids, with one amino acid ligating both metal ions. The known metal ligands are His, Glu, Asp or Lys. At least one other residue is required for catalysis, which may play an electrophillic role. Many metalloproteases contain an HEXXH motif, which has been shown in crystallographic studies to form part of the metal-binding site [ PUBMED:7674922 ]. The HEXXH motif is relatively common, but can be more stringently defined for metalloproteases as 'abXHEbbHbc', where 'a' is most often valine or threonine and forms part of the S1' subsite in thermolysin and neprilysin, 'b' is an uncharged residue, and 'c' a hydrophobic residue. Proline is never found in this site, possibly because it would break the helical structure adopted by this motif in metalloproteases [ PUBMED:7674922 ].
This group of metallopeptidases belong to MEROPS peptidase family M6 (immune inhibitor A family, clan MA(M)). The predicted active site residues for members of this family and thermolysin, the type example for clan MA, occur in the motif HEXXH.
InhA of Bacillus thuringiensis (an entomopathogenic bacterium) specifically cleaves antibacterial peptides produced by insect hosts [ PUBMED:2089225 ]. B. thuringiensis is highly resistant to the insect immune system due to its production of two factors, inhibitor A (InhA or InA) and inhibitor B (InhB or InB), which selectively block the humoral defence system developed by insects against Escherichia coli and Bacillus cereus [ PUBMED:992874 ]. B. thuringiensis is especially resistant to cecropins and attacins, which are the main classes of inducible antibacterial peptides in various lepidopterans and dipterans [ PUBMED:7140755 ], [ PUBMED:3318666 ]. InhA has been shown to specifically hydrolyze cecropins and attacins in the immune hemolymph of Hyalophora cecropia (Cecropia moth) in vitro [ PUBMED:6421577 ]. However, it has been suggested that the role of InhA in resistance to the humoral defence system is not consistent with the time course of InhA production [ PUBMED:12029046 ].
B. thuringiensis has two proteins belonging to this group (InhA and InhA2), and it has been shown that InhA2 has a vital role in virulence when the host is infected via the oral route [ PUBMED:12029046 ]. The B. cereus member has been found as an exosporium component from endospores [ PUBMED:10475957 ]. B. thuringiensis InhA is induced at the onset of sporulation and is regulated by Spo0A and AbrB [ PUBMED:11429458 ]. Vibrio cholerae PrtV is thought to be encoded in the pathogenicity island [ PUBMED:9371455 ]. However, PrtV mutants did not exhibit a reduced virulence phenotype, and thus PrtV is not an indispensable virulence factor [ PUBMED:9371455 ].
Annotation note: due to the presence of PKD repeats in some of the members of this group (e.g., V. cholerae VCA0223), spurious similarity hits may appear (involving unrelated proteins), which may lead to the erroneous transfer of functional annotations and protein names. Also, please note that related Bacillus subtilis Bacillopeptidase F (Bpr or Bpf) contains two different protease domains: N-terminal INTERPRO (peptidase S8, subtilase, a subtilisin-like serine protease) and this C-terminal domain (peptidase M6), which may also complicate annotation.
Gene Ontology
The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.
Molecular function | peptidase activity (GO:0008233) |
Biological process | proteolysis (GO:0006508) |
Domain organisation
Below is a listing of the unique domain organisations or architectures in which this domain is found. More...
Loading domain graphics...
Pfam Clan
This family is a member of clan Peptidase_MA (CL0126), which has the following description:
Clan MA is one of two zinc-dependent metallopeptidases that contain the HEXXH motif. The two histidines are zinc ligands. The structures of this clan show the active site is between its two sub-domains.
The clan contains the following 74 members:
Aminopep Aspzincin_M35 Astacin ATLF BSP DA1-like DUF1570 DUF2201_N DUF2268 DUF3152 DUF3267 DUF3810 DUF3920 DUF4157 DUF4344 DUF4953 DUF5700 DUF885 HRXXH Metallopep MPTase-PolyVal Peptidase_M1 Peptidase_M10 Peptidase_M11 Peptidase_M13 Peptidase_M2 Peptidase_M27 Peptidase_M3 Peptidase_M30 Peptidase_M32 Peptidase_M35 Peptidase_M36 Peptidase_M4 Peptidase_M41 Peptidase_M43 Peptidase_M48 Peptidase_M49 Peptidase_M4_C Peptidase_M50 Peptidase_M50B Peptidase_M54 Peptidase_M56 Peptidase_M57 Peptidase_M6 Peptidase_M60 Peptidase_M61 Peptidase_M64 Peptidase_M66 Peptidase_M7 Peptidase_M76 Peptidase_M78 Peptidase_M8 Peptidase_M85 Peptidase_M9 Peptidase_M90 Peptidase_M91 Peptidase_MA_2 Peptidase_Mx Peptidase_Mx1 Peptidase_U49 PhageMetallopep Reprolysin Reprolysin_2 Reprolysin_3 Reprolysin_4 Reprolysin_5 SprT-like WLM YbeY YgjP-like Zincin_1 Zincin_2 Zn_peptidase Zn_peptidase_2Alignments
We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets and the UniProtKB sequence database. More...
View options
We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.
Seed (4) |
Full (2284) |
Representative proteomes | UniProt (11597) |
||||
---|---|---|---|---|---|---|---|
RP15 (249) |
RP35 (998) |
RP55 (2459) |
RP75 (4110) |
||||
Jalview | |||||||
HTML | |||||||
PP/heatmap | 1 |
1Cannot generate PP/Heatmap alignments for seeds; no PP data available
Key:
available,
not generated,
— not available.
Format an alignment
Download options
We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.
Seed (4) |
Full (2284) |
Representative proteomes | UniProt (11597) |
||||
---|---|---|---|---|---|---|---|
RP15 (249) |
RP35 (998) |
RP55 (2459) |
RP75 (4110) |
||||
Raw Stockholm | |||||||
Gzipped |
You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.
HMM logo
HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...
Trees
This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.
Note: You can also download the data file for the tree.
Curation and family details
This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.
Curation
Seed source: | Merops |
Previous IDs: | none |
Type: | Domain |
Sequence Ontology: | SO:0000417 |
Author: |
Studholme DJ |
Number in seed: | 4 |
Number in full: | 2284 |
Average length of the domain: | 371.3 aa |
Average identity of full alignment: | 22 % |
Average coverage of the sequence by the domain: | 47.08 % |
HMM information
HMM build commands: |
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 61295632 -E 1000 --cpu 4 HMM pfamseq
|
||||||||||||
Model details: |
|
||||||||||||
Model length: | 656 | ||||||||||||
Family (HMM) version: | 14 | ||||||||||||
Download: | download the raw HMM for this family |
Species distribution
Sunburst controls
HideWeight segments by...
Change the size of the sunburst
Colour assignments
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Selections
Align selected sequences to HMM
Generate a FASTA-format file
Clear selection
This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...
Tree controls
HideThe tree shows the occurrence of this domain across different species. More...
Loading...
Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.
Structures
For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the Peptidase_M6 domain has been found. There are 4 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein sequence.
Loading structure mapping...
AlphaFold Structure Predictions
The list of proteins below match this family and have AlphaFold predicted structures. Click on the protein accession to view the predicted structure.
Protein | Predicted structure | External Information |
---|---|---|
Q9KMU6 | View 3D Structure | Click here |