Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
9  structures 1296  species 0  interactions 1544  sequences 37  architectures

Family: Med31 (PF05669)

Summary: SOH1

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "MED31". More...

MED31 Edit Wikipedia article

MED31
Identifiers
AliasesMED31, 3110004H13Rik, Soh1, CGI-125, mediator complex subunit 31
External IDsMGI: 1914529 HomoloGene: 9368 GeneCards: MED31
Gene location (Human)
Chromosome 17 (human)
Chr.Chromosome 17 (human)[1]
Chromosome 17 (human)
Genomic location for MED31
Genomic location for MED31
Band17p13.1Start6,643,311 bp[1]
End6,651,634 bp[1]
RNA expression pattern
PBB GE MED31 219318 x at fs.png
More reference expression data
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_016060

NM_026068

RefSeq (protein)

NP_057144

NP_080344

Location (UCSC)Chr 17: 6.64 – 6.65 MbChr 11: 72.21 – 72.22 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse
Med31
Identifiers
SymbolMed31
PfamPF05669
InterProIPR008831

Mediator of RNA polymerase II transcription subunit 31 is a protein in humans encoded by the MED31 gene.[5][6] It represents subunit Med31 of the Mediator complex. The family contains the Saccharomyces cerevisiae SOH1 homologues. SOH1 is responsible for the repression of temperature sensitive growth of the HPR1 mutant [7] and has been found to be a component of the RNA polymerase II transcription complex. SOH1 not only interacts with factors involved in DNA repair, but transcription as well. Thus, the SOH1 protein may serve to couple these two processes.[8]


References

Further reading

This article incorporates text from the public domain Pfam and InterPro: IPR008831


This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This is the Wikipedia entry entitled "Mediator (coactivator)". More...

Mediator (coactivator) Edit Wikipedia article

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

SOH1 Provide feedback

The family consists of Saccharomyces cerevisiae SOH1 homologues. SOH1 is responsible for the repression of temperature sensitive growth of the HPR1 mutant [1] and has been found to be a component of the RNA polymerase II transcription complex. SOH1 not only interacts with factors involved in DNA repair, but transcription as well. Thus, the SOH1 protein may serve to couple these two processes [2].

Literature references

  1. Fan HY, Klein HL; , Genetics 1994;137:945-956.: Characterization of mutations that suppress the temperature-sensitive growth of the hpr1 delta mutant of Saccharomyces cerevisiae. PUBMED:7982575 EPMC:7982575

  2. Fan HY, Cheng KK, Klein HL; , Genetics 1996;142:749-759.: Mutations in the RNA polymerase II transcription machinery suppress the hyperrecombination mutant hpr1 delta of Saccharomyces cerevisiae. PUBMED:8849885 EPMC:8849885


This tab holds annotation information from the InterPro database.

InterPro entry IPR008831

This entry includes subunit Med31 of the Mediator complex and the Saccharomyces cerevisiae homologue, Soh1. Soh1 is responsible for the repression of temperature sensitive growth of the Hpr1 mutant [ PUBMED:7982575 ] and has been found to be a component of the RNA polymerase II transcription complex. Soh1 not only interacts with factors involved in DNA repair, but transcription as well. Thus, the Soh1 protein may serve to couple these two processes [ PUBMED:8849885 ].

The Mediator complex is a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. The Mediator complex, having a compact conformation in its free form, is recruited to promoters by direct interactions with regulatory proteins and serves for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. On recruitment the Mediator complex unfolds to an extended conformation and partially surrounds RNA polymerase II, specifically interacting with the unphosphorylated form of the C-terminal domain (CTD) of RNA polymerase II. The Mediator complex dissociates from the RNA polymerase II holoenzyme and stays at the promoter when transcriptional elongation begins.

The Mediator complex is composed of at least 31 subunits: MED1, MED4, MED6, MED7, MED8, MED9, MED10, MED11, MED12, MED13, MED13L, MED14, MED15, MED16, MED17, MED18, MED19, MED20, MED21, MED22, MED23, MED24, MED25, MED26, MED27, MED29, MED30, MED31, CCNC, CDK8 and CDC2L6/CDK11.

The subunits form at least three structurally distinct submodules. The head and the middle modules interact directly with RNA polymerase II, whereas the elongated tail module interacts with gene-specific regulatory proteins. Mediator containing the CDK8 module is less active than Mediator lacking this module in supporting transcriptional activation.

  • The head module contains: MED6, MED8, MED11, SRB4/MED17, SRB5/MED18, ROX3/MED19, SRB2/MED20 and SRB6/MED22.
  • The middle module contains: MED1, MED4, NUT1/MED5, MED7, CSE2/MED9, NUT2/MED10, SRB7/MED21 and SOH1/MED31. CSE2/MED9 interacts directly with MED4.
  • The tail module contains: MED2, PGD1/MED3, RGR1/MED14, GAL11/MED15 and SIN4/MED16.
  • The CDK8 module contains: MED12, MED13, CCNC and CDK8.

Individual preparations of the Mediator complex lacking one or more distinct subunits have been variously termed ARC, CRSP, DRIP, PC2, SMCC and TRAP.

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets and the UniProtKB sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(71)
Full
(1544)
Representative proteomes UniProt
(2614)
RP15
(320)
RP35
(747)
RP55
(1219)
RP75
(1611)
Jalview View  View  View  View  View  View  View 
HTML View  View           
PP/heatmap 1 View           

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(71)
Full
(1544)
Representative proteomes UniProt
(2614)
RP15
(320)
RP35
(747)
RP55
(1219)
RP75
(1611)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(71)
Full
(1544)
Representative proteomes UniProt
(2614)
RP15
(320)
RP35
(747)
RP55
(1219)
RP75
(1611)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Pfam-B_7443 (release 8.0)
Previous IDs: SOH1;
Type: Family
Sequence Ontology: SO:0100021
Author: Moxon SJ
Number in seed: 71
Number in full: 1544
Average length of the domain: 93.30 aa
Average identity of full alignment: 47 %
Average coverage of the sequence by the domain: 53.07 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 57096847 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 25.0 25.0
Trusted cut-off 25.0 25.1
Noise cut-off 24.9 24.8
Model length: 95
Family (HMM) version: 14
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Hide

Weight segments by...


Change the size of the sunburst

Small
Large

Colour assignments

Archea Archea Eukaryota Eukaryota
Bacteria Bacteria Other sequences Other sequences
Viruses Viruses Unclassified Unclassified
Viroids Viroids Unclassified sequence Unclassified sequence

Selections

Align selected sequences to HMM

Generate a FASTA-format file

Clear selection

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the Med31 domain has been found. There are 9 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein sequence.

Loading structure mapping...