Summary: Centromere/kinetochore Zw10
Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.
This is the Wikipedia entry entitled "ZW10". More...
ZW10 Edit Wikipedia article
Centromere/kinetochore protein zw10 homolog is a protein that in humans is encoded by the ZW10 gene.[5][6] This gene encodes a protein that is one of many involved in mechanisms to ensure proper chromosome segregation during cell division. The encoded protein binds to centromeres during the prophase, metaphase, and early anaphase cell division stages and to kinetochore microtubules during metaphase.[6]
Function
Zeste white 10 (ZW10) was initially identified as a mitotic checkpoint protein involved in chromosome segregation, and then implicated in targeting cytoplasmic dynein and dynactin to mitotic kinetochores, but it is also important in non-dividing cells. These include cytoplasmic dynein targeting to Golgi and other membranes, and SNARE-mediated ER-Golgi trafficking.[7][8] Dominant-negative ZW10, anti-ZW10 antibody, and ZW10 RNA interference (RNAi) cause Golgi dispersal. ZW10 RNAi also disperse endosomes and lysosomes.[8]
Drosophila kinetochore components Rough deal (Rod) and Zw10 are required for the proper functioning of the metaphase checkpoint in flies.[9] The eukaryotic spindle assembly checkpoint (SAC) monitors microtubule attachment to kinetochores and prevents anaphase onset until all kinetochores are aligned on the metaphase plate. It is an essential surveillance mechanism that ensures high fidelity chromosome segregation during mitosis. In higher eukaryotes, cytoplasmic dynein is involved in silencing the SAC by removing the checkpoint proteins Mad2 and the Rod-Zw10-Zwilch complex (RZZ) from aligned kinetochores.[10][11][12]
Interactions
ZW10 has been shown to interact with RINT1[13]
References
- ^ a b c GRCh38: Ensembl release 89: ENSG00000086827 - Ensembl, May 2017
- ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000032264 - Ensembl, May 2017
- ^ "Human PubMed Reference:".
- ^ "Mouse PubMed Reference:".
- ^ Starr DA, Williams BC, Li Z, Etemad-Moghadam B, Dawe RK, Goldberg ML (Oct 1997). "Conservation of the centromere/kinetochore protein ZW10". J Cell Biol. 138 (6): 1289–301. doi:10.1083/jcb.138.6.1289. PMC 2132553
. PMID 9298984.
- ^ a b "Entrez Gene: ZW10 ZW10, kinetochore associated, homolog (Drosophila)".
- ^ Vallee RB, Varma D, Dujardin DL (November 2006). "ZW10 function in mitotic checkpoint control, dynein targeting and membrane trafficking: is dynein the unifying theme?". Cell Cycle. 5 (21): 2447–51. doi:10.4161/cc.5.21.3395. PMC 2794429
. PMID 17102640.
- ^ a b Varma D, Dujardin DL, Stehman SA, Vallee RB (February 2006). "Role of the kinetochore/cell cycle checkpoint protein ZW10 in interphase cytoplasmic dynein function". J. Cell Biol. 172 (5): 655–62. doi:10.1083/jcb.200510120. PMC 2063698
. PMID 16505164.
- ^ Basto R, Gomes R, Karess RE (December 2000). "Rough deal and Zw10 are required for the metaphase checkpoint in Drosophila". Nat. Cell Biol. 2 (12): 939–43. doi:10.1038/35046592. PMID 11146659.
- ^ Griffis ER, Stuurman N, Vale RD (June 2007). "Spindly, a novel protein essential for silencing the spindle assembly checkpoint, recruits dynein to the kinetochore". J. Cell Biol. 177 (6): 1005–15. doi:10.1083/jcb.200702062. PMC 2064361
. PMID 17576797.
- ^ Famulski JK, Vos L, Sun X, Chan G (February 2008). "Stable hZW10 kinetochore residency, mediated by hZwint-1 interaction, is essential for the mitotic checkpoint". J. Cell Biol. 180 (3): 507–20. doi:10.1083/jcb.200708021. PMC 2234252
. PMID 18268100.
- ^ Yang Z, Tulu US, Wadsworth P, Rieder CL (June 2007). "Kinetochore dynein is required for chromosome motion and congression independent of the spindle checkpoint". Curr. Biol. 17 (11): 973–80. doi:10.1016/j.cub.2007.04.056. PMC 2570756
. PMID 17509882.
- ^ Hirose H, Arasaki K, Dohmae N, Takio K, Hatsuzawa K, Nagahama M, Tani K, Yamamoto A, Tohyama M, Tagaya M (March 2004). "Implication of ZW10 in membrane trafficking between the endoplasmic reticulum and Golgi". EMBO J. 23 (6): 1267–78. doi:10.1038/sj.emboj.7600135. PMC 381410
. PMID 15029241.
Further reading
- Starr DA, Williams BC, Hays TS, Goldberg ML (1998). "ZW10 helps recruit dynactin and dynein to the kinetochore". J. Cell Biol. 142 (3): 763–74. doi:10.1083/jcb.142.3.763. PMC 2148168
. PMID 9700164.
- Starr DA, Saffery R, Li Z, et al. (2000). "HZwint-1, a novel human kinetochore component that interacts with HZW10". J. Cell Sci. 113 (11): 1939–50. PMID 10806105.
- Chan GK, Jablonski SA, Starr DA, et al. (2001). "Human Zw10 and ROD are mitotic checkpoint proteins that bind to kinetochores". Nat. Cell Biol. 2 (12): 944–7. doi:10.1038/35046598. PMID 11146660.
- Scaërou F, Starr DA, Piano F, et al. (2001). "The ZW10 and Rough Deal checkpoint proteins function together in a large, evolutionarily conserved complex targeted to the kinetochore". J. Cell Sci. 114 (Pt 17): 3103–14. PMID 11590237.
- Gevaert K, Goethals M, Martens L, et al. (2004). "Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides". Nat. Biotechnol. 21 (5): 566–9. doi:10.1038/nbt810. PMID 12665801.
- Hirose H, Arasaki K, Dohmae N, et al. (2005). "Implication of ZW10 in membrane trafficking between the endoplasmic reticulum and Golgi". EMBO J. 23 (6): 1267–78. doi:10.1038/sj.emboj.7600135. PMC 381410
. PMID 15029241.
- Musio A, Mariani T, Montagna C, et al. (2004). "Recapitulation of the Roberts syndrome cellular phenotype by inhibition of INCENP, ZWINT-1 and ZW10 genes". Gene. 331: 33–40. doi:10.1016/j.gene.2004.01.028. PMID 15094189.
- Nakajima K, Hirose H, Taniguchi M, et al. (2005). "Involvement of BNIP1 in apoptosis and endoplasmic reticulum membrane fusion". EMBO J. 23 (16): 3216–26. doi:10.1038/sj.emboj.7600333. PMC 514507
. PMID 15272311.
- Wang H, Hu X, Ding X, et al. (2005). "Human Zwint-1 specifies localization of Zeste White 10 to kinetochores and is essential for mitotic checkpoint signaling". J. Biol. Chem. 279 (52): 54590–8. doi:10.1074/jbc.M407588200. PMID 15485811.
- Kops GJ, Kim Y, Weaver BA, et al. (2005). "ZW10 links mitotic checkpoint signaling to the structural kinetochore". J. Cell Biol. 169 (1): 49–60. doi:10.1083/jcb.200411118. PMC 1351127
. PMID 15824131.
- Varma D, Dujardin DL, Stehman SA, Vallee RB (2006). "Role of the kinetochore/cell cycle checkpoint protein ZW10 in interphase cytoplasmic dynein function". J. Cell Biol. 172 (5): 655–62. doi:10.1083/jcb.200510120. PMC 2063698
. PMID 16505164.
- Nousiainen M, Silljé HH, Sauer G, et al. (2006). "Phosphoproteome analysis of the human mitotic spindle". Proc. Natl. Acad. Sci. U.S.A. 103 (14): 5391–6. doi:10.1073/pnas.0507066103. PMC 1459365
. PMID 16565220.
- Arasaki K, Taniguchi M, Tani K, Tagaya M (2006). "RINT-1 regulates the localization and entry of ZW10 to the syntaxin 18 complex". Mol. Biol. Cell. 17 (6): 2780–8. doi:10.1091/mbc.E05-10-0973. PMC 1474792
. PMID 16571679.
- Lin YT, Chen Y, Wu G, Lee WH (2006). "Hec1 sequentially recruits Zwint-1 and ZW10 to kinetochores for faithful chromosome segregation and spindle checkpoint control". Oncogene. 25 (52): 6901–14. doi:10.1038/sj.onc.1209687. PMID 16732327.
- Ewing RM, Chu P, Elisma F, et al. (2007). "Large-scale mapping of human protein-protein interactions by mass spectrometry". Mol. Syst. Biol. 3 (1): 89. doi:10.1038/msb4100134. PMC 1847948
. PMID 17353931.
- Arasaki K, Uemura T, Tani K, Tagaya M (2007). "Correlation of Golgi localization of ZW10 and centrosomal accumulation of dynactin". Biochem. Biophys. Res. Commun. 359 (3): 811–6. doi:10.1016/j.bbrc.2007.05.188. PMID 17560939.
- Sun Y, Shestakova A, Hunt L, et al. (2007). "Rab6 regulates both ZW10/RINT-1 and conserved oligomeric Golgi complex-dependent Golgi trafficking and homeostasis". Mol. Biol. Cell. 18 (10): 4129–42. doi:10.1091/mbc.E07-01-0080. PMC 1995728
. PMID 17699596.
![]() |
This article on a gene on human chromosome 11 is a stub. You can help Wikipedia by expanding it. |
This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.
This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.
Centromere/kinetochore Zw10 Provide feedback
Zw10 and rough deal proteins are both required for correct metaphase check-pointing during mitosis [1,2]. These proteins bind to the centromere/kinetochore [2].
Literature references
-
Basto R, Gomes R, Karess RE; , Nat Cell Biol 2000;2:939-943.: Rough deal and Zw10 are required for the metaphase checkpoint in Drosophila. PUBMED:11146659 EPMC:11146659
-
Chan GK, Jablonski SA, Starr DA, Goldberg ML, Yen TJ; , Nat Cell Biol 2000;2:944-947.: Human Zw10 and ROD are mitotic checkpoint proteins that bind to kinetochores. PUBMED:11146660 EPMC:11146660
Internal database links
SCOOP: | COG2 COG5 Dor1 Sec5 Sec8_exocyst Vps51 Vps53_N Vps54_N |
This tab holds annotation information from the InterPro database.
InterPro entry IPR009361
Zeste white 10 (ZW10) was initially identified as a mitotic checkpoint protein involved in chromosome segregation, and then implicated in targeting cytoplasmic dynein and dynactin to mitotic kinetochores, but it is also important in non-dividing cells. These include cytoplasmic dynein targeting to Golgi and other membranes, and SNARE-mediated ER-Golgi trafficking [PUBMED:17102640, PUBMED:16505164]. Dominant-negative ZW10, anti-ZW10 antibody, and ZW10 RNA interference (RNAi) cause Golgi dispersal. ZW10 RNAi also disperse endosomes and lysosomes [PUBMED:16505164].
Drosophila kinetochore components Rough deal (Rod) and Zw10 are required for the proper functioning of the metaphase checkpoint in flies [PUBMED:11146659]. The eukaryotic spindle assembly checkpoint (SAC) monitors microtubule attachment to kinetochores and prevents anaphase onset until all kinetochores are aligned on the metaphase plate. It is an essential surveillance mechanism that ensures high fidelity chromosome segregation during mitosis. In higher eukaryotes, cytoplasmic dynein is involved in silencing the SAC by removing the checkpoint proteins Mad2 and the Rod-Zw10-Zwilch complex (RZZ) from aligned kinetochores [PUBMED:17576797, PUBMED:18268100, PUBMED:17509882].
Gene Ontology
The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.
Cellular component | nucleus (GO:0005634) |
chromosome, centromeric region (GO:0000775) | |
Biological process | mitotic cell cycle (GO:0000278) |
Domain organisation
Below is a listing of the unique domain organisations or architectures in which this domain is found. More...
Loading domain graphics...
Pfam Clan
This family is a member of clan Vps51 (CL0295), which has the following description:
This clan includes an N-terminal domain from several vesicle transport proteins that are related to Vps51.
The clan contains the following 18 members:
COG2 COG5 COG6 Dor1 Dsl1_N Exo70 Exo84_C Sec15 Sec3_C Sec3_C_2 Sec5 Sec6 Sec8_exocyst Vps51 Vps52 Vps53_N Vps54_N Zw10Alignments
We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the UniProtKB sequence database, the NCBI sequence database, and our metagenomics sequence database. More...
View options
We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.
Seed (8) |
Full (1083) |
Representative proteomes | UniProt (1746) |
NCBI (2164) |
Meta (0) |
||||
---|---|---|---|---|---|---|---|---|---|
RP15 (210) |
RP35 (530) |
RP55 (838) |
RP75 (1112) |
||||||
Jalview | |||||||||
HTML | |||||||||
PP/heatmap | 1 |
1Cannot generate PP/Heatmap alignments for seeds; no PP data available
Key:
available,
not generated,
— not available.
Format an alignment
Download options
We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.
Seed (8) |
Full (1083) |
Representative proteomes | UniProt (1746) |
NCBI (2164) |
Meta (0) |
||||
---|---|---|---|---|---|---|---|---|---|
RP15 (210) |
RP35 (530) |
RP55 (838) |
RP75 (1112) |
||||||
Raw Stockholm | |||||||||
Gzipped |
You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.
HMM logo
HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...
Trees
This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.
Note: You can also download the data file for the tree.
Curation and family details
This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.
Curation
Seed source: | Pfam-B_9476 (release 9.0) |
Previous IDs: | none |
Type: | Family |
Sequence Ontology: | SO:0100021 |
Author: |
Finn RD |
Number in seed: | 8 |
Number in full: | 1083 |
Average length of the domain: | 374.80 aa |
Average identity of full alignment: | 18 % |
Average coverage of the sequence by the domain: | 57.34 % |
HMM information
HMM build commands: |
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 47079205 -E 1000 --cpu 4 HMM pfamseq
|
||||||||||||
Model details: |
|
||||||||||||
Model length: | 544 | ||||||||||||
Family (HMM) version: | 14 | ||||||||||||
Download: | download the raw HMM for this family |
Species distribution
Sunburst controls
HideWeight segments by...
Change the size of the sunburst
Colour assignments
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Selections
Align selected sequences to HMM
Generate a FASTA-format file
Clear selection
This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...
Tree controls
HideThe tree shows the occurrence of this domain across different species. More...
Loading...
Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.