Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
0  structures 1  species 0  interactions 1  sequence 1  architecture

Protein: I1KBX4_SOYBN (I1KBX4)

Summary

This is the summary of UniProt entry I1KBX4_SOYBN (I1KBX4).

Description: Alpha-mannosidase {ECO:0000256|ARBA:ARBA00012752, ECO:0000256|RuleBase:RU361199}
Source organism: Glycine max (Soybean) (Glycine hispida) (NCBI taxonomy ID 3847)
Length: 1012 amino acids
Reference Proteome: ✓

Please note: when we start each new Pfam data release, we take a copy of the UniProt sequence database. This snapshot of UniProt forms the basis of the overview that you see here. It is important to note that, although some UniProt entries may be removed after a Pfam release, these entries will not be removed from Pfam until the next Pfam data release.

Pfam domains

Download the data used to generate the domain graphic in JSON format.

Show or hide the data used to generate the graphic in JSON format.

Source Domain Start End
sig_p n/a 1 21
low_complexity n/a 5 20
Pfam Glyco_hydro_38N 41 352
low_complexity n/a 217 232
Pfam Alpha-mann_mid 357 449
disorder n/a 586 590
Pfam Glyco_hydro_38C 603 820
disorder n/a 653 655
disorder n/a 669 671
Pfam Glyco_hydro38C2 901 1007
disorder n/a 969 971
disorder n/a 982 983

Show or hide domain scores.

Sequence information

This is the amino acid sequence of the UniProt sequence database entry with the accession I1KBX4. This sequence is stored in the Pfam database and updated with each new Pfam release, but this means that the sequence we store may differ from that stored by UniProt.

Sequence:
1
MENTGLCVLC FILLLLGCVI SSECKYIRYN TTSTIVPGKL NVHLVPHTHD
50
51
DVGWLKTIDQ YYVGSNNSIQ GACVQNVLDS LVTALLADKN RKFIYVEQAF
100
101
FQRWWREQSD DIQNIVKELV NSGQLEFING GFCMHDEAAT HYIDMIDQTT
150
151
LGHQFIKEEF GVTPRIGWQI DPFGHSAVQA YLLGAEVGFD SLFFARIDYQ
200
201
DRAKRKDEKT LEVVWRGSKS FGSSSQIFSG AFPENYEPPS SFYYEVNDDS
250
251
PIVQDDVSLF DYNVPERVNE FVAAAISQAN ITRTNHIMWT MGTDFKYQYA
300
301
QTWFRQLDKF IHYVNQDGRV HALYSTPSIY TDAKHAAKEA WPIKTDDFFP
350
351
YADRVNAYWT GYFTSRPAIK GYVRFMSGYY LAARQLEYFK GKSPLCPKTD
400
401
SLAEALAIAQ HHDAVSGTEK QHVANDYAKR LSIGYTEAEK VVALSLACLT
450
451
EGATKTGCKN PQTKFQQCPL LNISYCPASE VDFSNGKNLV VVVYNALGWK
500
501
REDIIRIPVV NENVVVRDSS GKNIQSQLVP ILDDFRGLRN YHTVAYLGVS
550
551
PTAKPKYWLA FAATVPPIGF STYYVSYAKK EATISDRDTA YQPGNKSDTI
600
601
TVGLKNLNLV YSVKEGKLIQ YINSRSKVNE SLEQAYKFYA GYGNDGTETA
650
651
QASGAYIFRP DGSPSPIKSN GKSPLTVFRG PIVHEVHQKI SPWIYQTTRL
700
701
YKGKEHAEVE FIVGPIPIDD RVGKEIATEI KTNLASNKTF YTDSNGRDFI
750
751
ERVRDYREDW HLEVNQPVAG NYYPINLGIY LKDKSKEFSI LVDRAVGGSS
800
801
IIDGQLELMV HRRLLEDDSR GVAEALNETV CIHDNCTGLT VLGKYYFRID
850
851
PVGEGARWRR SFAQEIYSPL LLAFTEGEGH WGDSHVTTFS AIDSSYNLPD
900
901
NVAIITLQDL GDGRVLLRLA HLYEIDEDKY LSVKATVELK KVFPNKQINK
950
951
ITEVSLSANQ ERAEMERKRL VWQVKGSPPE PKVWRGGPVD PENLIVELAP
1000
1001
MEIRTFIISF RH                                         
1012
 

Show the unformatted sequence.

Checksums:
CRC64:E2E8A8CFF6132200
MD5:b2bf0a5d3760eb30696e836e15da0d39

AlphaFold Structure Prediction

The protein structure below has been predicted by DeepMind with AlphaFold. For more information, please visit the AlphaFold page for this protein.

Model confidence scale

  Very High (pLDDT > 90)
  Confident (90 > pLDDT > 70)
  Low (70 > pLDDT > 50)
  Very Low (pLDDT < 50)
Highly accurate protein structure prediction with AlphaFold. John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, Alex Bridgland, Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer, Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Pushmeet Kohli & Demis Hassabis Nature 2021-07-15; DOI: 10.1038/s41586-021-03819-2;