Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
0  structures 1  species 0  interactions 1  sequence 1  architecture

Protein: K7LMN0_SOYBN (K7LMN0)

Summary

This is the summary of UniProt entry K7LMN0_SOYBN (K7LMN0).

Description: TIR domain-containing protein {ECO:0000259|Pfam:PF13676}
Source organism: Glycine max (Soybean) (Glycine hispida) (NCBI taxonomy ID 3847)
Length: 1008 amino acids
Reference Proteome: ✓

Please note: when we start each new Pfam data release, we take a copy of the UniProt sequence database. This snapshot of UniProt forms the basis of the overview that you see here. It is important to note that, although some UniProt entries may be removed after a Pfam release, these entries will not be removed from Pfam until the next Pfam data release.

Pfam domains

Download the data used to generate the domain graphic in JSON format.

Show or hide the data used to generate the graphic in JSON format.

Source Domain Start End
disorder n/a 4 7
disorder n/a 9 10
disorder n/a 16 25
low_complexity n/a 31 48
low_complexity n/a 43 53
disorder n/a 49 52
disorder n/a 56 61
disorder n/a 67 83
low_complexity n/a 116 131
disorder n/a 133 159
low_complexity n/a 154 165
Pfam TIR_2 183 301
disorder n/a 418 421
disorder n/a 428 430
low_complexity n/a 776 788

Show or hide domain scores.

Sequence information

This is the amino acid sequence of the UniProt sequence database entry with the accession K7LMN0. This sequence is stored in the Pfam database and updated with each new Pfam release, but this means that the sequence we store may differ from that stored by UniProt.

Sequence:
1
MIGNLTSAGM DIQEESPMFG SLKAMTTRNM SSSSSAFFSA NQSPFFSPRS
50
51
PSSCQLSESA RLDVPSNRIH LGLAPSSTTS EIPEPNSLVN VRCTLSDVSA
100
101
SPAGCNSVDL QKLDRISSSV GISSSSISSY SNRHEDGYSG QKEKRIKKDR
150
151
NHRTSSTPGS TSFSSYRLRS CDVFIGLHGC KPPLLRFAKW LCAELETQGI
200
201
SCFVSDRARS RSSRKLGIAE RAMDAASFGI VIITRKSFKN QYTIEELQFF
250
251
CSKKNLIPIY FDLSPADCLV RDIIEKRGEL WEKHGGELWL SYDGLEQEWK
300
301
DAVHGLSRLD ECKLEAQDGN WRDCILRAVT LLAMRLGRRS VAERLTKWRE
350
351
KVEKEEFPLA RNENFIGRKK ELSQLEFILF GDVTGDAEQD YIELKARPRR
400
401
KSVRIGWGKS NVIDERWRER HMGNGSRKDK EPIVWKESEK EIELQGIEFS
450
451
NRHNHLRLKR GMYSKRKRGM KILYGKGIAC VSGDSGIGKT ELILEFAYRF
500
501
HQRYKMVLWI GGGSRYIRQN YLNIRSLLEV DVGVENGLEK TQIRGFEEQE
550
551
VAAISRVRKE LMRNIPYLVV IDNLESEKDW WDHKLVMDLL PRFGGETHVI
600
601
ISTCLPRIMN LEPLKLSYLS GVEAMSLMLG SGKDYPVAEV DALRIIEEKV
650
651
GRLTLGLAII SAILSELPIT PSRLLDTINR MPLKEMSWSG KEAHSFRKNT
700
701
FLLQLFDVCF SIFDHADGPR SLATRMVLVS GWFAPGAIPV SLLSLAAQKV
750
751
PERCQGKCFW KKVKQLLTCG FTSSYAKKSE LEASSLLLRF NIARSSTKQG
800
801
YIHINDLIKL YAQRRDDTGA AQAMIQAIIN HGPISQNLEH LWAACFLLFG
850
851
FGHDPVVVEV KVSELLYLVK RVVLPLAIHT FITYSRCTAA LELLRLCTNA
900
901
LEAADQAFVT PVDKWLDKSL CWRSIQTNAQ LNPCLWQELA LCRATVLETR
950
951
AKLMLRGAQF DIGDDLIRKA VFIRASICGE DHPDTISARE TLSKLTRLNA
1000
1001
NVQIHTST                                              
1008
 

Show the unformatted sequence.

Checksums:
CRC64:ABE02ADC08AE3853
MD5:209685b1fcced7a33b0a51f5f275d5cd

AlphaFold Structure Prediction

The protein structure below has been predicted by DeepMind with AlphaFold. For more information, please visit the AlphaFold page for this protein.

Model confidence scale

  Very High (pLDDT > 90)
  Confident (90 > pLDDT > 70)
  Low (70 > pLDDT > 50)
  Very Low (pLDDT < 50)
Highly accurate protein structure prediction with AlphaFold. John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, Alex Bridgland, Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer, Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Pushmeet Kohli & Demis Hassabis Nature 2021-07-15; DOI: 10.1038/s41586-021-03819-2;