Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
0  structures 1  species 0  interactions 1  sequence 1  architecture

Protein: ADDB_RAT (Q05764)

Summary

This is the summary of UniProt entry ADDB_RAT (Q05764).

Description: Beta-adducin
Source organism: Rattus norvegicus (Rat) (NCBI taxonomy ID 10116)
Length: 725 amino acids
Reference Proteome: ✓

Please note: when we start each new Pfam data release, we take a copy of the UniProt sequence database. This snapshot of UniProt forms the basis of the overview that you see here. It is important to note that, although some UniProt entries may be removed after a Pfam release, these entries will not be removed from Pfam until the next Pfam data release.

Pfam domains

Download the data used to generate the domain graphic in JSON format.

Show or hide the data used to generate the graphic in JSON format.

Source Domain Start End
disorder n/a 1 23
coiled_coil n/a 31 51
disorder n/a 32 33
disorder n/a 69 72
Pfam Aldolase_II 135 317
disorder n/a 331 333
disorder n/a 343 345
disorder n/a 394 395
disorder n/a 417 437
disorder n/a 444 725
coiled_coil n/a 558 585
low_complexity n/a 637 648
low_complexity n/a 687 716
low_complexity n/a 715 725

Show or hide domain scores.

Sequence information

This is the amino acid sequence of the UniProt sequence database entry with the accession Q05764. This sequence is stored in the Pfam database and updated with each new Pfam release, but this means that the sequence we store may differ from that stored by UniProt.

Sequence:
1
MSEDTVPEAA SPPPSQGQHY FDRFSEDDPE YLRLRNRAAD LRQDFNLMEQ
50
51
KKRVTMILQS PSFREELEGL IQEQMKKGNN SSNIWALRQI ADFMASTSHA
100
101
VFPASSMNFS MMTPINDLHT ADSLNLAKGE RLMRCKISSV YRLLDLYGWA
150
151
QLSDTYVTLR VSKEQDHFLI SPKGVSCSEV TASSLIKVNI LGEVVEKGSS
200
201
CFPVDTTGFS LHSAIYAARP DVRCAIHLHT PATAAVSAMK CGLLPVSHNA
250
251
LLVGDMAYYD FNGEMEQEAD RINLQKCLGP TCKILVLRNH GMVALGDTVE
300
301
EAFYKVFHLQ AACEVQVSAL SSAGGTENLI LLEQEKHRPH EVGSVQWAGS
350
351
TFGPMQKSRL GEHEFEALMR MLDNLGYRTG YTYRHPFVQE KTKHKSEVEI
400
401
PATVTAFVFE EDGVPVPALR QHAQKQQKEK TRWLNTPNTY LRVNVADEVQ
450
451
RNMGSPRPKT TWMKADEVEK SSSGMPIRIE NPNQFVPLYT DPQEVLDMRN
500
501
KIREQNRQDI KSAGPQSQLL ASVIAEKSRS PSTESQLASK GDADTKDELE
550
551
ETVPNPFSQL TDQELEEYKK EVERKKLEQE QEGEKDAATE EPGSPVKSTP
600
601
ASPVQSPTRA GTKSPAVSPS KASEDAKKTE VSEANTEPEP EKPEGVVVNG
650
651
KEEEPCVEEV LSKGPGQMTT NADTDGDSYK DKTESVTSGP LSPEGSPSKS
700
701
PSKKKKKFRT PSFLKKSKKK EKVES                           
725
 

Show the unformatted sequence.

Checksums:
CRC64:0715BD6A75B3D174
MD5:ccaeb06fca5bb739d1994532f23a1a25

AlphaFold Structure Prediction

The protein structure below has been predicted by DeepMind with AlphaFold. For more information, please visit the AlphaFold page for this protein.

Model confidence scale

  Very High (pLDDT > 90)
  Confident (90 > pLDDT > 70)
  Low (70 > pLDDT > 50)
  Very Low (pLDDT < 50)
Highly accurate protein structure prediction with AlphaFold. John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, Alex Bridgland, Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer, Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Pushmeet Kohli & Demis Hassabis Nature 2021-07-15; DOI: 10.1038/s41586-021-03819-2;